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A B S T R A C T

This thesis derives and discusses equations that describe the
evolution of atomic systems subjected to two monochromatic
and coherent radiation fields and treats both continuous and
temporally pulsed irradiation. This theoretical description is de-
veloped mainly to understand the influence of the photon field
intensities on experimental ionization spectra. The primary ap-
plication of this theoretical framework is on methods that rely
on resonant laser excitation and non-resonant laser ionization to
extract information on the hyperfine structure of atomic systems.

In particular, qualitative and quantitative discussions on the
laser-related changes in hyperfine splitting extracted from ion-
ization spectra are presented. Also, a method for increasing the
resolution of resonance ionization techniques (potentially up un-
til the natural linewidth of the electronic transitions) is discussed
and theoretically justified. Both topics are illustrated with exper-
imental data.

S A M E N VAT T I N G

Deze thesis bevat afleidingen voor vergelijkingen die de evolutie
van atomaire systemen beschrijven onder invloed van twe coher-
ente, monochromatische stralingsvelden. Deze velden kunnen
zowel continu als gepulsd in de tijd zijn. De hoofdreden voor
de ontwikkeling van dit theoretisch kader is om de invloed van
de intensiteit van deze stralingsvelden op experimentele ion-
izatiespectra na te gaan. Het toepassingsgebied van dit werk
situeert zich dan ook binnen methodes die gebruik maken van
resonante laser-excitatie en niet-resonante laserionizatie om de
hyperfijnstructuur van atomaire systemen te karakterizeren.

Een eerste luik van de thesis presenteert zowel kwantitatief als
kwalitatief onderzoek rond laser-gerelateerde veranderingen in
experimenteel geëxtraheerde hyperfijn parameters. Verder wordt
ook een methode besproken die de resolutie van resonantie laser
ionizatietechnieken zou kunnen verbeteren (potentieel tot en met
de natuurlijke lijnbreedte van de electronische transities). Beide
onderwerpen worden geïllustreerd met experimentele data.
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V U L G A R I S E R E N D E S A M E N VAT T I N G

Een belangrijke observatie in de kernfysica is dat er kernen zijn
met een bepaalde configuratie van protonen en neutronen die
ervoor zorgen dat ze opmerkelijke eigenschappen hebben. Deze
kernen worden met de naam ‘magische kernen’ aangeduid en
vormen de hoeksteen van ons theoretisch begrip van de kern-
fysica. Een belangrijke open vraag binnen het hedendaagse on-
derzoek is in hoeverre onze kennis over de gemakkelijk bestu-
deerbare magische kernen mag veralgemeend worden naar meer
exotische kernen. Dergelijke exotische kernen zijn vaak heel kort-
levend en moeilijk te produceren, wat het onderzoek natuurlijk
moeilijker maakt.

Recent werd er in CERN een nieuw experiment ontwikkeld
om eigenschappen van die exotische kernen te bestuderen. Dit
experiment berust op het gebruik van lasers om de fijnere details
van de kernstructuur te ontrafelen. Om dat op een nauwkeurige
en precieze manier te doen moet natuurlijk volledig in kaart ge-
bracht worden hoe die lasers precies inwerken op de atomen.
Het is op dit moment dat deze thesis op de voorgrond komt.
Vertrekkende van de basiswetten van de kwantummechanica
gaat deze thesis dieper in op de laser-atoom interacties met als
duidelijk doel de toepassing in de nucleaire spectroscopie.

Essentieel bevat deze thesis twee resultaten. Een eerste is dat
de interacties van de lasers en atomen ervoor kunnen zorgen
dat de parameters die uit een experiment worden gedestilleerd
kunnen afwijken van hun eigenlijke, echte waarde. Enige voor-
zichtigheid is dus geboden bij het kiezen van de experimentele
condities. Een tweede resultaat bestaat uit een beschrijving en
een theoretische onderbouwing van een nieuwe methode waar-
mee zowel de precisie als de nauwkeurigheid van de experi-
mentele techniek in principe significant verbeterd zou kunnen
worden. Beide resultaten werden experimenteel gestaafd.
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F O R E W O R D

This thesis grew out of a need to understand the finer details
of resonance ionization spectroscopy (RIS). This technique has
already been used in various nuclear physics applications [1],
and a new Collinear Resonance Ionization Spectroscopy (CRIS)
beam line has recently been constructed at ISOLDE, CERN, to
apply it to nuclear physics cases. CRIS uses a collinear geometry:
the laser beams and the atomic or ionic beam travel along the
same straight line. Schematically, a first laser beam is tuned so
that the energy of one photon matches the energy difference
between two electronic states in the atom of interest. This first
laser step is followed by a second one, with photons of sufficient
energy to non-resonantly ionize only the electrons that were ex-
cited by the first laser. Then, the atomic beam is separated from
its ionized component, and these ions are detected.

This approach has two distinct advantages over fluorescence
detection methods: ions can be detected much more efficiently
than photons and they can be separated from the non-ionized
background, leading to background-free detection. There are down-
sides however. For example, there is an issue related to the phe-
nomenon of power broadening (a notion that will be developed
more rigorously later in this thesis): the higher the laser power
density, the broader the line shapes will be. This is undesirable
since it means that the energy resolution of the experiment goes
down as it tries to be more efficient. Additionally CRIS uses
more than one laser step with a non-resonant ionization step
that requires a high-power laser. A crucial question is therefore
what minimal resolution could be attained using CRIS. The an-
swer on this question then determines the physics cases within
reach of the technique.

Note that the previous paragraph made two statements but
did not provide an explanation as to why they are true:

1. The more powerful the laser, the broader the line shape.

2. The second laser step further broadens the line shape.

Both of these statements have to be made more precise and quan-
tified. Doing this will require a more sophisticated language:
a mathematical model that describes resonant laser ionization
physics. The next chapters are devoted to the development of
such a model. This model not only describes power broadening
of line shapes, it also predicts some systematic effects that have
to be understood to perform high-resolution CRIS experiments.

xi
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Since this thesis is mainly theoretical in nature, such a high-
resolution CRIS experiment will be abstracted. An atom, nucleus
and electrons, is represented by a collection of atomic quantum
states. The two lasers are described by electromagnetic fields (be
it in quantized form or just as classical fields). A CRIS experi-
ment is then simulated by applying two electromagnetic fields
to these discrete states and by then solving the equations of mo-
tion. The first laser field is responsible for the energy-sensitivity
of CRIS; it scans the energies of the electronic state. The second
laser provides a probe of the first laser and the impact it has on
the system.

Having two photon fields that can interact with the discrete
states and the continuum can bring unexpected physics to light;
resonance positions can change and the resonance shapes can
be asymmetrized. These effects, while always interesting from
a theoretical point of view, could be a hindrance for an experi-
mentalist. The aim of this thesis is therefore to investigate these
effects, and to determine whether or not they are detrimental to
the extraction of nuclear observables. If they are, the next ques-
tion is then if they can be avoided or, if this is not the case, un-
derstood well enough to allow for accurate corrections during
data analysis. This is a research topic that has already attracted
some interest in the Leuven nuclear moments group[2].

If pulsed lasers are used, using a probe field also brings along
an additional degree of freedom: it allows the experimentalist
to choose when to probe, in contrast with fluorescence detection
which is spontaneous decay process. This thesis will also attempt
to study this degree of freedom.

It is worthwhile to briefly go over the structure of this doc-
ument. First, a model for resonant ionization physics will be
developed. Before discussing any of the applications, the link
between the physics of the electronic states and the nucleus will
be explained (summarizing the theory of hyperfine interactions).
This chapter will allow the formulation of some well-defined
test cases that will be studied to better understand two distinct
topics: power broadening and systematic energy shifts due to co-
herent effects. Since the CRIS experiment uses pulsed lasers, the
comments made in the previous paragraph will play a decisive
role here.
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T H E O R E T I C A L F O U N D AT I O N S



1
H Y P E R F I N E I N T E R A C T I O N S

The study of exotic nuclei (nuclei with a proton-to neutron ratio
that is significantly different from the ratio in stable isotopes) has
proven to be an ideal testing ground for nuclear structure theory,
and continuously provides input for new theoretical models [3].
Understanding the exact nature of the proton-neutron interac-
tion relies crucially on the measurement of nuclear moments,
mainly the magnetic dipole moment and the electric quadru-
pole moment. The magnetic dipole moment is sensitive to the
single particle orbit occupied by the unpaired nucleon in odd-
odd or odd-even nuclei, while the electrical quadrupole moment
provides key information on collective effects and deformation
of nuclei. One of the ways these moments can be experimentally
measured is by studying the hyperfine interaction between the
nucleus and the electrons that orbit it. The Collinear Resonance
Ionization Spectroscopy (CRIS) technique probes these hyperfine
energy levels. The goal of CRIS is to enable the study of exotic
nuclei in cases where the production is too low for other meth-
ods [4, 5]. This chapter will briefly revise the basics of hyperfine
interaction and its application for nuclear structure research.

1.1 the hyperfine interaction

The hyperfine interaction is a result of the interaction of the nuc-
lear multipole moments with the charge and current distribu-
tions of the electrons that orbit the nucleus [6]. This interaction
modifies the Hamiltonian of the nucleus-electron system and
therefore leads to a small shift in the energies and lifting of the
degeneracies of the electronic states. The size and sign of this
shift depends not only on these multipole moments but also on
the total angular momentum of the states, which causes them to
lift the degeneracy of the energy levels in a ‘Coloumb atom’. The
magnitude of the shift is also determined by the size of the mul-
tipole moments of the nucleus. This means that information on
the nuclear properties can be extracted from the energy splitting
of the hyperfine-split states.

The total angular momentum of a state in the nucleus-electron
system is determined by the total electronic spin Ĵ and the total
nuclear spin Î. In free atoms, these two spins couple together
and result in a total angular momentum F̂. Each relative ori-
entation of the angular momenta Ĵ and Î results in a differ-
ent value of the norm F of F̂; its value is therefore restricted

2



1.1 the hyperfine interaction 3

to F ∈ {|I− J|, |I− J+ 1|, . . . , I+ J− 1, I+ J}. In absence of inter-
actions other than the simple Coulomb interaction, all of these
F-states are degenerate, but the addition of the hyperfine inter-
action can completely lift this degeneracy.

The higher the order of the multipole moment, the smaller the
effect of the interaction on the energy levels will be. The domin-
ant contribution to the total hyperfine splitting is therefore due
to the interaction of the electrons with the magnetic dipole and
the electric quadrupole moment of the nucleus. The nuclear mag-
netic moment µ̂ can be related to its spin through a dimension-
less g-factor and and the nuclear magneton µN = e

2mp
:

µ̂ = gµNÎ. (1)

The quadrupole moment Q̂ for a system of charges qi (e.g. pro-
tons) can be defined as

Q̂ =

√
16π

5

∑
i

qir̂
2
iY
0
2(θi,φi), (2)

where Y2 is the spherical harmonic function of order two. The
hyperfine Hamiltonian of the system due to the nuclear mag-
netic dipole and electric quadrupole moment interacting with
the magnetic field and electric field gradient induced by the elec-
tron cloud is given by

Ĥdip + Ĥquad = −µ̂ · B̂−
1

6
Q̂ · ∇E. (3)

The corresponding energy shift can be expressed as function of
the angular momenta in the system, the experimental nuclear
moments, µ and Qs, and the hyperfine parameters A (related to
the dipole interaction) and B (linked to the quadrupole interac-
tion). These A and B parameters are defined as follows:

A =
µB(0)

IJ
B = eQs

∂2V

∂z2
. (4)

B(0) is the magnetic field in the center of the nucleus induced
by the electrons and V is the electric potential at the center of
the nucleus created by the electrons. Note how these quantities
contain both nuclear information and electronic information.

The shifts in energy due to Hamiltonian (3) is then given by

Edip(F)+Equad(F) = −
A

2
C+B

3C(C+ 1) − 4I(I+ 1)J(J+ 1)

8I(2I− 1)J(2J− 1)
, (5)

where C = [F(F+ 1) − I(I+ 1) − J(J+ 1)]. Interesting for nuclear
physics is the fact that the size of the splittings governed by (5)
gives information on nuclear properties that are very relevant
for studying nuclear structure. How these energy splittings can
be experimentally determined will be illustrated by explaining
the idea behind the CRIS technique.



1.2 collinear resonance ionization spectroscopy 4

1.2 collinear resonance ionization spectroscopy

If the energy of laser photons exactly matches the energy separ-
ation of electronic states, the laser photons can excite electrons
to a higher atomic state. Of course, angular momentum selec-
tion rules also need to be satisfied. For example, consider the
level scheme shown in figure 1. There are three possible trans-
itions here, and if the wavelength of the photons is tuned cor-
rectly, these photons will induce excitations and de-excitations
among the relevant atomic states. One way of probing whether

Figure 1: An example of an electronic level scheme. The states are la-
belled by their total angular momentum F. On the left is a
typical spectrum taken by a collinear laser spectroscopy ex-
periment.

or not the laser is indeed tuned to resonance is by measuring the
fluorescence photons. This is the cornerstone of collinear (fluor-
escence) laser spectroscopy. The technique takes advantage of
the reduction in the longitudinal velocity spread of an acceler-
ated ion beam [7]. The laser beam is overlapped with the atomic
or ionic beam. A typical spectrum is shown in figure 1 along
with the corresponding level scheme.

Another way of probing the population of the excited state
is to avoid letting the electron decay back to the ground state.
Instead the atom is stripped of this excited electron, for example
by interactions with a second laser that take the electron’s energy
above the ionization potential, a process which can be resonant
or non-resonant. Ionization spectroscopy experiments then use
some form of ion detection to determine the hyperfine structure,
by recording the number of ions as function of the wavelength of
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the first resonant laser step. Ion detection has three advantages
over photon detection:

1. Ion detectors typically have a 100% quantum efficiency, as
opposed to up to 20% for photon detectors.

2. Ion detection can be performed with a 100% solid angle
coverage; ions can be guided towards the detector with
electromagnetic fields. Solid angles for photon detection
are typically only of the order of 10% or less.

3. There is no background (e.h related to scattered light scat-
tering of the laser beam itself). IF the resonant excitation
process happens in an ultra-high vacuum environment, only
resonantly excited ions are produced which can be deflec-
ted from any non-ionized background beam.

CRIS uses a second laser step to ionize excited atoms. The
additional laser step can lead to higher-order couplings that
can distort the experimental resonance shapes. Additionaly, the
lineshapes can be broadened or shifted. The first effect results
in reduced resolution and the second effect leads to a shift of
the probed hyperfine levels, leading to an incorrect determina-
tion of the hyperfine parameters A and B if the lines are fitted
with simple Voigt profiles. Therefore a systematic error associ-
ated with the extracted nuclear observables can occur. Under-
standing these effects is therefore crucial for the high-resolution
operation of CRIS. This thesis aims to begin this investigation
by developing a theoretical model that can take the higher order
correlations into account.



2
AT O M - P H O T O N I N T E R A C T I O N S : T H E
T W O - L E V E L AT O M

This chapter is devoted to understanding how electronic states
interact with monochromatic coherent light sources, with in par-
ticular lasers in mind. The coherence properties of such sources
imply that rate equations that are typically used for interac-
tions of bound states with incoherent photons do not fully con-
sider the physics problem. Adding coherence to the equations
of motion requires using the time-dependent Schrödinger equa-
tion. This chapter will discuss solutions of this time-dependent
Schrödinger equation. Rather than treating atoms and photons
independently, an approach based on dressed states [8] will be
used. The concept of dressed states will be introduced in this
chapter.

Electrons populating excited states can decay back to a lower-
lying state. This spontaneous decay mechanism will not be taken
into account in this thesis. This automatically means that there is
a class of effects that the model will not be able to predict which
could nevertheless be of significance. Adding spontaneous decay
to the model could be done in future work.

Once the interactions of bound states and laser photons are
understood, the interactions that couple a bound state to a con-
tinuum will be characterized. The coupling of a bound states to
the infinitely large collection of continuum states will be reduced
to an effective interaction of the discrete states [11].

This thesis restricts itself to the simple scenario of two-step
ionization: first a resonant excitation step, followed by a non-
resonant ionization step induced by a second laser. The initial
focus will be on the workhorse of atomic physics: the two-level
atom. In chapter 3, the theory developed in this chapter will be
expanded to larger systems.

Ideal conditions will be assumed initially. For example, the
emitted wavelength spectrum of the first excitation laser is as-
sumed to be a delta-distribution, there are no fluctuations in
laser power, etc. In chapter 4, these unrealistic assumptions will
be relaxed, which will result in a more realistic description of a
CRIS experiment allowing for quantitative simulations and ex-
amples.

6



2.1 resonant excitation : the jaynes-cummings model 7

2.1 resonant excitation : the jaynes-cummings model

The model for resonant ionization developed in this section is
called the Jaynes-Cummings model [12, 13]. Note that from now
on, natural units ( h = c = 1) are used.

Consider a quantized atom consisting of two levels, labeled |0〉
and |1〉, and a photon field given by

Ê = e
(
ωa

ε0V

) 1
2 (
â+ â†

)
sin (kz), (6)

where ωa is the energy of the photons, ε0 is the vacuum per-
mittivity and V is the quantization volume. The operators â and
â† are the photon annihilation and creation operators and k is
the photon wave number. Throughout this derivation, boldface
is used for vectors and hats for operators.

The evolution of the photons and electrons can be described by
solving Schrödingers equation for a suitable Hamiltonian. The
Hamiltonian describing a free atom immersed in a laser field
can be expressed in terms of the fermionic and photonic creation
and annihilation operators. Atomic systems where the electrons
can occupy states |0〉 or |1〉 are of particular interest, requiring
a pair of creation and annihiliation operators ĉ†i and ĉi for both
states. The photons should be described by coherent states with
a Poissonian population distribution around the mean number
of photons n. Since n is typically very large for lasers, these
coherent photon states can be approximated by a number state
|n〉, with corresponding annihilation (creation) operator â(†). If
the energy of the two states are denoted with ωi and the energy
of a laser photon with ωa, the free atom and laser Hamiltonians
are then given by:

Ĥatom = ω0ĉ
†
0ĉ0 +ω1ĉ

†
1ĉ1 (7)

Ĥphoton = nωaâ
†â. (8)

The interaction Hamiltonian is given by the product of field (6)
and the dipole moment of the atomic electron (d = −er):

Ĥint =− d̂ · Ê

=− (d̂ · e)
(
ωa

ε0V

) 1
2 (
â+ â†

)
sin (kz),

=− d̂

(
ωa

ε0V

) 1
2 (
â+ â†

)
sin (kz), (9)

where the definiation d̂ = d̂ · e was made. Define also

ĝ = d̂

(
ωa

ε0V

) 1
2

sin (kz). (10)
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The interaction Hamiltonian can then be written as

Ĥint =− ĝ
(
â+ â†

)
(11)

It will prove convenient to express the total Hamiltonian Ĥatom +

Ĥphoton + Ĥint in matrix form with respect to the two-state basis
{|0,n〉 , |1,n− 1〉}. These two bare states are respectively the com-
bination of the electronic ground state with n laser photons and
the excited state with n − 1 laser photons and their energy is
quasi-degenerate when ωa = ω1 −ω0. The choice of these two
states are the most pertinent for expressing excitations from |0〉
to |1〉 or de-excitations from |1〉 to |0〉 accompanied by absorption
or emission of one of the photons. Note that, because of parity
conservation,

〈0| d̂ |0〉 = 0 = 〈1| d̂ |1〉 . (12)

Hence, the photon field only couples one state with the other
one, but not with itself. By definition of the operators â and â†

it follows that

〈0,n| Ĥint |1,n− 1〉

= 〈0| ĝ |1〉 〈n|
(
â+ â†

)
|n− 1〉

=
√
n 〈0| ĝ |1〉 ,

:= g (13)

where g is the strength of the laser-induced interactions. For a
system with nuclear spin I and electronic spins J0 and J1, g2 is
given by [2]

g2 =
πe2

mε0

P1

ω1 −ω0
f(J0, J1)(2J0 + 1)(2F0 + 1)(2F1 + 1)

×

(
F1 1 F0

−mF1 0 mF0

)2{
J1 F1 I

F0 J0 1

}2
, (14)

where the
√
n has been absorbed into the power density of the

laser P1 since this is the experimentally accessible quantity. The
objects on the second line of (14) are Wigner 3J and 6J symbols
[14]. In equation (14) f is the oscillator strength, which is a dimen-
sionless cross section that expresses the strength of the transition.
It can be related to the Einstein coefficients and the absorption
cross section [15]. The value of f depends on the transition and
the atom. Values of f are tabulated, see e.g. [16] for the alkali
atoms. The Hamiltonian Ĥint can now be written in the basis
{|0,n〉 , |1,n− 1〉} as

HI =

(
0 g

g∗ 0

)
. (15)
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By virtue of (15), the diagonal elements of the total Hamiltonian
Ĥ = Ĥatom + Ĥphoton + Ĥint are just the matrix elements of Ĥatom +

Ĥphoton. For example,

〈0,n| Ĥatom + Ĥphoton |0,n〉
= 〈0| Ĥatom |0〉+ 〈n| Ĥphoton |n〉
= ω0 +nωa

The total Hamiltonian Ĥ can then be written in the following
matrix form:

H =Hatom +Hphoton +H
I

=

(
ω0 +nωa g

g∗ ω1 + (n− 1)ωa

)
. (16)

Since the terms nωa only add a phase term, they can be re-
moved without changing the dynamics. This results in the fol-
lowing Hamiltonian:

H =

(
ω0 g

g∗ ω1 −ωa

)
. (17)

The coupling g can in principle depend on time, for example
when the lasers are pulsed instead of continuous wave (cw).
Note that g(t) contains two essential bits of information:

1. The value of g(t) depends on the laser power.

2. The value of g(t) reflects the angular momentum selection
rules. If they are not met, g(t) will be zero. These selection
rules are present in expression (14) through the Wigner
symbols.

2.1.1 Analytical Solution for the Two-Level Atom

It is convenient to introduce the atom-laser detuning ∆01:

∆01 = ω1 −ω0 −ωa. (18)

This quantity expresses how much the laser frequency ωa is de-
tuned from the frequency differenceω1−ω0 of the atomic trans-
ition. The resonance condition is therefore ∆01 = 0. When the
laser field is very weak (g ≈ 0) the two states {|0,n〉 , |1,n− 1〉}
are approximately the eigenstates of the Hamiltonian. These states
are called the bare states. When the laser is tuned to the reson-
ance frequency, i.e. ∆01 = 0, the two bare states are degenerate
since the energy of the photon compensates the electronic en-
ergy difference. Due to the presence of the non-diagonal terms
in (17), the laser atom interaction, these two bare states are no
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longer good eigenstates of the Hamiltonian and their degeneracy
will be lifted. The true eigenstates of the system are called the
dressed states. Finding these dressed states is most conveniently
done by introducing a mixing angle θ:

θ(t) =
1

2
arctan

2g(t)

∆01
. (19)

The two eigenstates of (17) can then be defined as rotations of
the bare states

|−,n〉 = cos θ(t) |0,n〉− sin θ(t) |1,n− 1〉 , (20)

|+,n〉 = sin θ(t) |0,n〉+ cos θ(t) |1,n− 1〉 , (21)

which can be written as(
|−,n〉
|+,n〉

)
= R(θ)

(
|0,n〉

|1,n− 1〉

)
(22)

with R defined as

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (23)

The states (20) and (21) are the dressed states. They are some-
times also referred to as the adiabatic states, an name that will
be explained in chapter 6. The associated eigenvalues for a de-
tuning ∆01 are

λ± =
1

2

(
∆01 ±

√
4g2(t) +∆201

)
=
1

2
∆01 ±

1

2
Ω, (24)

where Ω is the Rabi flopping frequency:

Ω = λ− − λ+ =
√
4g2(t) +∆201. (25)

On resonance, λ± = ±12
√
4g2(t) = ±g(t): the two states |−,n〉

and |+,n〉 are separated by an energy 2g(t).
Figure 2 shows an energy diagram of a few bare (left) and

dressed states (right). There are infinitely many steps to this en-
ergy ladder, since there is a doublet of dressed states for each
value of n. The energy difference between the two adiabatic basis
states also depends on the laser frequency. This is shown graph-
ically in figure 3, which depicts the eigenvalues of one of the
pairs in figure 2 as function of the detuning. The repelling of the
energies is a sign that the two states are now coupled (mixed). It
is precisely this mixing that is responsible for population trans-
fer from the ground state to the excited state. If two eigenvalue
curves cross rather than repelling, i.e. if the degeneracy of the
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ωa

ωa

Bare Dressed

2∆01

|1,n− 1〉

|0,n〉

|+,n− 1〉

|−,n− 1〉

|1,n〉

|0,n+ 1〉

|+,n〉

|−,n〉

|+,n+ 1〉

|−,n+ 1〉

|1,n− 2〉

|0,n− 1〉

Ω

Ω
2

Figure 2: On the left: three pairs of bare states, each pair with one
photon more than the previous. The lasers are tuned to a de-
tuning ∆01. On the right, the interaction is switched on. The
approximate degeneracy is lifted by an energy splitting Ω.
In principle, the energy ladder extends infinitely far up, and
down until the states dressed with zero photons are reached.

dressed states is not lifted by the laser field, they do not ex-
change population; no electrons get excited from the electronic
ground state to the electronic excited state.

The populations of an initially undressed atom (so: an atom
that has not yet seen any radiation fields) when it enters a ra-
diation field can now be calculated. The initial state of the sys-
tem is |0,n〉. The effects on the population dynamics will clearly
depend on the oscillation frequency of this field (i.e. ωa). It is
useful to define the probability amplitudes of the adiabatic and
bare states, A(t) and B(t) respectively [17];

A(t) =

(
a−(t)

a+(t)

)
B(t) =

(
b1(t)

b2(t)

)
, (26)

so that a2− + a2+ = 1 = b21 + b
2
2. Schrödingers equation can then

be written down in the basis of bare states:

iḂ(t) = H ·B, (27)
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∆01

λ
2g

|+,n〉

|−,n〉

|0,n〉

|1,n−
1〉

|0,n〉

|1,n−
1〉

Figure 3: Eigenvalues of the Hamiltonian (17) as function of detuning
of the excitation laser. On resonance, the energy curves repel
each other, signifying full mixing of the two states. In other
words, the two states are coupled.

where H is the Hamiltonian defined earlier in (17). Since the adia-
batic states are just rotations of the bare states, their populations
are also related by this rotation:

B(t) = R[θ(t)]A(t). (28)

So, the statement that the system initially is in |0,n〉 gets trans-
lated as follows:

B(0) =

(
1

0

)
=⇒ A(0) =

(
cos(θ)

sin(θ)

)
. (29)

With this initial condition, the adiabatic probability amplitudes
of the system at a time t (in the presence of a constant laser field)
are given by

A(t) =

(
cos(θ) exp (−iλ−t)

sin(θ) exp (−iλ+t)

)
. (30)

This results from the time-dependent Schrödinger equation in
the adiabatic basis which can be found by starting from the
Schrödinger equation for B(t) and using relation (28):

iȦ(t) =
[
R(−θ)HIR(θ) − iR(−θ)Ṙ(t)

]
A(t) (31)

=

(
λ− −iθ̇

iθ̇ λ+

)
A(t) (32)

The appearance of the time derivative θ̇ of the mixing angle is
worth noting. The time dependence of θ is inherited from the
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time dependence of g, and indicates that populations could be-
have differently when subjected to pulsed electromagnetic waves
(ġ 6= 0) instead of cw irradiation (ġ = 0). At this stage, however,
set ġ = 0 and thus θ̇ = 0; only cw lasers are considered.

Combining (30) and utilizing trigonometry then gives for cw
laser irradiation [18]

P+ = |〈0,n|Ψ(t)〉|2 = |A(0)† ·A(t)|2

= 1−
1

2
sin2(2θ) [1− cos (Ωt)]

P− = 1− P+

=
1

2
sin2(2θ) [1− cos (Ωt)] (33)

Interestingly, the population oscillates between the two adia-
batic states, a phenomenon referred to as Rabi Oscillations [19].
The oscillation frequency is determined by both the laser power
(through the form of g) and the detuning of the laser ∆01. This
dependency of the oscillation frequency on both ∆01 and g will
have important implications for the numerical simulations per-
formed in later chapters. Note that if the laser field is on reson-
ance and present for half of the oscillation period, the population
is completely inverted from the ground state to the excited state.

On the right in figure 4 the population of the excited state |1〉
as function of detuning ∆01 is shown. This evolution as function
of time is also shown for two values of ∆01 on the left.

t 0 ∆01

P1,n

Figure 4: Left: Evolution of the population of the excited state as func-
tion of time for two detunings. Right: the population as func-
tion of frequency. Note that the time oscillation period is dif-
ferent for different detunings, as well as the maximal popu-
lation.

2.2 hamiltonian description of the ionization pro-
cess

The continuum is a continuous set of infinitely many states. Tak-
ing all of these states into account in the same way as the bound
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states is impossible and instead a method to decrease the popu-
lation of the atomic system within a Schrödinger equation form-
alism is required. One solution is to add a non-hermitian term
to the Hamiltonian (readers interested in a framework useful for
dealing with non-hermitian Hamiltonians might find [20] to be
a good starting point). This means that the eigenvalues of the
Hamiltonian will no longer be real. The imaginary component
of the eigenvalues will cause an exponential damping of the pop-
ulations.

Since the applied ionizing laser field only provides enough en-
ergy to promote electrons in the excited state to the continuum,
the following Hamiltonian can be added:

Hadd =

(
0 0

0 −iΓ2

)
, (34)

where Γ determines the ionization strength. This form clearly
indicates that ionization directly from the ground state is im-
possible. Γ = σ ·P2, where σ is the photo-ionization cross section
and P2 is the power density of the ionizing laser. This intuitive
approach is simplistic, and is insufficient for the more general
multi-level case. A more rigorous treatment is called for.

The effect of an ionizing laser on discrete states will be derived
from first principles following an approach based on [11] and
expanding on earlier research for nuclear laser spectroscopy [2]
which was based on a different approach outlined in [21] and
[22]. It will be shown that the approach used in this thesis will
result in effects not included in the earlier work.

Consider a single bound state |1〉 and a continuum of states
|ε,ωε〉, labeled by some continuous parameter ε. The laser field
that couples this discrete state to the set of continuum states
will be assumed to result in a coherent coupling given by V =

V(t) cos (ωbt+Φ(t)), where ωb is the frequency of the laser
field.

The wave function of the atomic system consisting of a state
|1〉 and the continuum at a certain time t can be written in the
bare states basis as

|Ψ, t〉 = b1(t) +
∫

dε bε |ε,ωε〉 . (35)

Applying Schrödinger’s equation reveals how the coefficients a
evolve under influence of the laser field V(t):

iḃ1 = ω1b1 −

∫
dε 〈1 |V(t)| ε,ωε〉 cos (ωbt+Φ)bε, (36)

iḃε = ωεbε − 〈ε,ωε |V(t)| 1〉 cos (ωbt+Φ)bε. (37)

Start by making the transformation

cj = bj exp (iωjt) (38)
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and introduce the detuning ∆ε1 = ωε −ω1 −ωb. This change
of variables makes the transformation to co-rotating coordinates
and is particularly well suited for further calculations. Making
the Rotating Wave approximation, equations (36) and (37) be-
come

iċ1 = −
1

2

∫
dε 〈1 |V(t)| ε〉 exp (iΦ− i∆ε1) cε, (39)

iċε = −
1

2
〈ε |V(t)| 1〉 exp (iΦ− i∆ε1) c1. (40)

By formally integrating equation (40) and plugging it into equa-
tion (39), an integrodifferential equation for c1(t) can be found:

ċ1(t) =−
1

4

∫
dε
∫t
0

dt ′ 〈1 |V(t)| ε,ωε〉 〈ε,ωε
∣∣V(t ′)∣∣ 1〉

× exp (−i∆ε(t− t
′) + i(Φ(t) −Φ(t ′))) c1(t

′). (41)

The switch to integrating over the energy of the continuum states
instead of the label ε is now made. Introducing the density of
states ρ(ωε), the previous equation becomes

ċ1(t) =−
1

4

∫∞
0

dωε
∫t
0

dt ′ ρ(E) |〈1 |V(t)| ε,ωε〉|2

× exp (−i∆ε(t− t
′) + i(Φ(t) −Φ(t ′))) c1(t

′). (42)

To proceed analytically, an approximation has to be made, which
assumes that the matrix elements 〈1 |V(t)| ε〉 only slowly depend
on ε, and that they have a large width χ. Note that the oscillatory
term exp (−i∆ε(t− t

′)) in the integral has a period proportional
to 1/(t− t ′). The only non-zero contributions to the total integral
will therefore be the contributions of the t ′ for which |t− t ′| .
1/χ. Taking χ → ∞ then yields the Markov approximation [11]:
ċ1(t) is only influenced by c1(t ′ = t). So,

ċ1(t) =−
c1
4

∫∞
0

dωερ(ωε) |〈1 |V(t)| ε,ωε〉|2
∫t
0

dt ′

× exp (−i∆ε1(t− t
′)) (43)

This approach is valid for structureless continua. Note that the
phases have disappeared. The time integral can be approxim-
ated by integrating from −∞ to t instead of from 0 to t. This
approximation is justified because of the argument given in fa-
vor of the Markov approximation: the integral is zero anyway
for |t− t ′| & 1/χ. Notice now that the time integral is the Fourier
transform of the Heaviside function. Integral (43) becomes [23]

ċ1(t) =−
c1(t)

4

∫∞
0

dωε |〈1 |V(t)| ε,ωε〉|2 ρ(ωε)

× [iP(1/∆ε1) + πδ(∆ε1)] (44)
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where P is the principal part and δ is the delta function. Now
define

Γ(ωε, t) =
π

2
|〈1 |V(t)| ε,ωε〉|2 ρ(ωε), (45)

δω(t) =
1

4
P

∫∞
0

dωε ρ(ωε)
|〈1 |V(t)| ε,ωε〉|2

∆ε1

=
1

2π
P

∫∞
0

dωε
Γ(ωε)

∆ε1
, (46)

Γ(ωε, t) is the strength of the coupling of the discrete state to
the states in the continuum in the shell of energy ωε. The delta
function in equation (44) motivates the definition Γ(t) = Γ(ωε =
ω1 +ωb, t). This is the coupling of the discrete state to the state
at which the laser plus bound state is tuned. In practical ap-
plications, however, the laser has a certain linewidth and it then
makes more sense to define Γ(t) as the integral of Γ(ωε, t) over
all the ε the laser can reach.

The interpretation of the two quantities δω and Γ can be illus-
trated by considering constant laser powers. Then

ċ1(t) = −

(
iδω+

Γ

2

)
c1(t), (47)

and therefore

c1(t) = e
−Γte−iδωtc1(0). (48)

Going back to the original expansion coefficients b, the evolution
of the probability amplitude of the bare states can be found:

b1(t) = e
−Γte−i(ω1+δω)tb1(0) (49)

The term δω is an energy shift of the bound state due to the
coupling with the continuum, and could be called a dynamical
bound-continuum Stark shift [24]. An example of a Stark shift
was already encountered earlier in the form of the energy split-
ting (25) due to the resonant laser step [25], this time due to the
bound-bound interactions. For an example of both theoretical
and experimental values of the Stark shift, see e.g. [26].

The size of shift (46) could in principle be computed by cal-
culating the matrix elements of the transition to the continuum
states. This is usually done by atomic mean-field calculations.
The evolution of the population of the system is not influenced
by this shift, so they will usually just be absorbed in the defini-
tions of the energy of the states. Typically, the shifts are small un-
less the power density becomes really high [27]. Moreover, since
the energy difference of the excited states is the main parameter
of interest, the only important quantity is the relative shift of
these states. Since the states in the excited hyperfine multiplet all



2.3 combinng resonant excitation and ionization 17

have similar electronic wave functions, this relative shift should
be small.

Finally, note that the factor Γ is the same as the one defined
in equation (34) (per definition of the ionization cross section)
and that definition given in (45) links it to first principles. In
practice, the relation Γ = σP2 is more useful and is adopted for
the simulations in this work.

2.3 combining resonant excitation and non-resonant

ionization

The results of the previous two sections can now be used to
construct one Hamiltonian describing both processes:

Htot =

(
ω0 g(t)

g∗(t) ω1 −ωa − i
Γ(t)
2 + δω1(t)

)
(50)

For notational convenience, the unknown Stark shift δω1(t) is
absorbed into the energy ω1. By utilizing the frequency detun-
ing ∆01 = ω1 −ω0 −ωa, this can be rewritten relative to ω0
as

Htot =

(
0 g(t)

g∗(t) ∆01 − i
Γ(t)
2

)
(51)

without changing any of the dynamics. This Hamiltonian, here
expressed in the bare state basis, can be rewritten in the basis
of the adiabatic states introduced in equations (20) and (21). The
definition of the mixing angle θ is kept and the adiabatic states
are now the instantaneous eigenstates of the real part of Hamilto-
nian (51). Equation (32) becomes [17]:

iȦ(t) =

(
λ− − 1

2Γ sin2 θ −iθ̇− i
4Γ sin 2θ

iθ̇− i
4Γ sin 2θ λ+ − 1

2Γ cos2 θ

)
A(t) (52)

2.3.1 Solution for a Two-Level Atom

Schrödingers equation with Hamiltonian (51) can be solved in
the case of constant laser powers. The eigenvalues of Htot are

λtot
± =

1

2

∆01 − iΓ
2
±

√
4g2 +

(
∆01 − i

Γ

2

)2 (53)

=
1

2

∆01 − iΓ
2
±

√
4g2 +∆201 −

Γ

4

2

− i∆01Γ


Note that the real part of the eigenvalues contains a contribution
of the diagonal term iΓ . This means that the energy splitting
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of the states will be different in the presence of the second
laser; this can be considered another example of a Stark shift.
The imaginary part will cause an exponential damping of the
population in both of the eigenstates of the Hamiltonian. The
real and imaginary parts of eigenvalues (53) are shown in figure
5. The curve of the real parts of the eigenvalues of course still
repel, while the imaginary parts of the eigenvalues switch places
near the resonance. Calculating the evolution of the populations

∆01∆01

Im
(λ
)

R
e
(λ
)

Figure 5: Real (left) and Imaginary (right) parts of the eigenvalues of
Hamiltonian (51) as function of the detuning of the first laser.
Note once again the repelling of the real part of the eigenval-
ues, and the reversal of the imaginary parts of the eigenval-
ues.

is still possible analytically [2]:

P0n =

∣∣∣∣∆01 + iΓ sinΩt+ iΩ cosΩt
Ω

∣∣∣∣2 e−Γt
P1n =

∣∣∣ g
Ω

sinΩt
∣∣∣2 e−Γt, (54)

where Ω = λtot
− − λtot

+ . The exponential damping is clearly ex-
pressed by the factor e−Γt, but it should be kept in mind that Ω
is complex so that the goniometric functions of Ω also behave
like exponential terms. In figure 6 the population of the excited
state is shown (on resonance, so ∆10 = 0), as well as the pop-
ulation that has escaped the system from t = 0 until a certain
time t ′, as function of the laser-atom detuning. This graph was
made by solving Schrödingers equation numerically. The Rabi
ocillations are clearly damped, and a smooth resonance in the
ionization rate I can be observed. I is defined as

I = 1− P1,n − P0,n. (55)

The ionization curve is quite smooth, since the simulation spans
a few Rabi cycles and the rate is averaged over these cycles.
There is still a slight oscillation superimposed on the Lorentzian
shape, but it is very small. Chapter 4 will show that the inclu-
sion of the pulse shape of the laser removes even these small
oscillations.
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∆01t 0

P0,n I

Figure 6: Left: Evolution of the population of the ground state as func-
tion of time with ∆10 = 0. When this curve is maximal, all
of the population is in the ground state. The population defi-
cit has been ionized. Right: the ionization rate as function of
frequency. This curve is smooth, but some small oscillations
can be seen. The dotted lines are there to visually support
the idea that population missing from the atomic system has
been ionized.

2.4 power broadening for simultaneous excitation

and ionization

Power broadening refers to the increase of the width of a res-
onance with increasing laser powers [28]. Power broadening is
therefore usually not desirable, since it reduces the experimental
resolution: two close-lying resonances could be hidden under-
neath one wide signal. On the other hand, increasing the laser
powers also results in an increased total experimental efficiency,
which is of course desirable. Therefore a balance must be found
between resolution and efficiency.

Since the CRIS experiment uses at least two lasers, there are
two possible sources of power broadening. This section studies
the influence of both lasers on the width of the resonance. First,
the resonant excitation step is treated.

2.4.1 Power Broadening in the Jaynes-Cummings Model

The analytical solution for the populations of a two-level atom
subjected to a single resonant laser field was given in (33):

P1,n =
1

2
sin2(2θ) [1− cos (Ωt)] (56)

The laser power enters this expression through the coupling g,
which is related to both θ and Ω:

θ(t) =
1

2
arctan

2g(t)

∆01
(57)

Ω = λ+ − λ− =
√
4g2(t) +∆201. (58)

In laser spectroscopic experiments like CRIS, the oscillations in
time in equation (56) are not observed. This can be attributed to
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the fact that experimental conditions never allow coherence to
be perfectly maintained, e.g. due to fluctuations in for example
the laser power or in the phases of the electronic wavefunctions
of the atomic ensemble. In other words, 1− cos (Ωt) ≈ 1. The
maximal experimental excited population Pexp

1n is then solely de-
termined by 1/2 sin2(2θ):

P
exp
1n =

1

2
sin2(2θ) (59)

Looking at equation (57), two cases should be distinguished:

1. |∆01| � g. On resonance, the denominator dominates the
argument of (57) so that θ ≈ π

4 , regardless of laser power.

2. |∆01| & g. Off resonance, the denominator does not dom-
inate the argument of (57): as g increases, θ only slowly
evolves towards π

4 . The larger the detuning, the longer it
takes for the excitation probability to saturate. The beha-
viour of Pexp

1,n for three fixed detunings is shown in figure 7.

2g
∆01
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1n
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Figure 7: Plot of the function Pexp
1n = 1

2 sin2(2θ) as a function of 2g(t)∆01
for a few fixed detunings .

The population saturates at a lower laser power on resonance
than in the tails of the peak. At a certain point, increasing the
power of the laser will only make the tails of the resonance go up,
while the efficiency on resonance remains the same (since it is
already close to optimal). The observed resonance will therefore
get wider with increasing laser power.

Another way of looking at this is that as the power is increased,
the probability of stimulated emission increases. This implies
that the lifetime of the excited state decreases, which in turn
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implies that the absolute uncertainty on the lifetime decreases.
By virtue of the time-energy uncertainty relation

∆E∆τ >
1

2
, (60)

the uncertainty on the energy increases; the resonance becomes
broader. Figure 8 shows the broadening of the population pro-
files of the excited state for four different laser powers, each one
ten times larger than the previous one. The oscillations are not
averaged out in these simulations, but the increasing width of
the envelopes can clearly be seen.

Psat 10Psat

100Psat 1000Psat

P1,n−1

P1,n−1

0

0

0

0

∆01

∆01∆01

∆01

Figure 8: Population of the excited state for four excitation laser
powers, each one ten times larger than the previous.
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2.4.2 Power Broadening due to Ionization

An ionization step introduces an additional decay channel for
the electrons in the excited state. Not only can the electrons be
stimulated back to the ground state, they can now also ‘decay’
into one of the continuum states. So, the half life of the ex-
cited state is reduced and the the excited state therefore gets
broadened. Since the energy probing done by the first laser is
sensitive to this energy width if both lasers fire simultaneously,
the measured resonance will broaden. Based on this argument,
the resonances will not broaden if the ionization step takes place
after the excitation pulse has stopped. This will be discussed fur-
ther in chapter 6.

Figure 9 plots the linewidth of the ionization signal as a func-
tion of the laser power of the second laser expressed relative to
the saturation power (see figure 10 for a saturation curve). These
widths were obtained by fitting the simulated data with a Lorent-
zian, which resulted in an essentially perfect fit. Figure 10 shows
the ionization rate for the same laser powers. Comparing these
two figures reveals that power broadening occurs even when the
ionization process is not yet saturated.
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Figure 9: Linewidth in MHz as function of rescaled ionization laser
power, with constant power in the first step. The fitting errors
are smaller than the dots.
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Figure 10: Ionization rate as function of rescaled ionization laser power.
The fitting errors are smaller than the dots (and since these
are simulations there are no other errors).



3
R E S O N A N T L A S E R I O N I Z AT I O N : M U LT I - L E V E L
AT O M S

The goal of this chapter is to generalize the results of chapter
2 to more than two levels. Consider a system made up of two
groups of states, one of which will be called the ground state
multiplet, containing k states, and the other the excited state mul-
tiplet, containing l states.

3.1 resonant excitation in a multi-level atom

The Hamiltonian governing resonant excitations is a straight-
forward generalization of the two-level Hamiltonian (see equa-
tion (61)). Note that this is a block matrix with four blocks:
there’s a diagonal block that contains the electronic energies of
the ground state multiplet and a block with the electronic ener-
gies of the excited state multiplet minus the energy of a laser
photon. The two other blocks contain the couplings g and are
each others hermitian conjugate (in this case just the transpose,
since the couplings are real).



ωi1 0 . . . 0 gi1,f1 gi1,f2 . . . gi1,fl

0 ωi2 . . . 0 gi2,f1 gi2,f2 . . . gi2,fl
...

...
. . .

...
...

...
. . .

...

0 0 . . . ωik gik,f1 gik,f2 . . . gik,fl

gi1,f1 gi2,f1 . . . gik,f1 ωf1 −ωa 0 . . . 0

gi1,f2 gi2,f2 . . . gik,f2 0 ωf2 −ωa . . . 0

...
...

. . .
...

...
...

. . .
...

gi1,fl gi2,fl . . . gik,fl 0 0 . . . ωfl −ωa



.

(61)

This is the description of resonant excitation for larger sys-
tems: a straightforward generalization of the two-level case. In
figure 11 the eigenvalues of Hamiltonian (61) are shown as func-
tion of the detuning for the specific case of a spin 1 nucleus and
a ground-state electron spin 1

2 and excited-state electron spin 3
2 ,

with a Alower = 4GHz and Aupper= 300 MHz. This system has
a ground state doublet and a triplet of excited states, so k = 2

and l = 3. Note how the mixing of the states causes repelling
of the eigenvalue curves. Angular momentum conservation for-

24
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bids the transition from a state with total angular momentum 1
2

to a state with total angular momentum 5
2 , so at the energy of

this transition the purple and cyan eigenvalue curves intersect
instead of repelling. The frequencies at which the mixings occur
are exactly the frequencies at which peaks will be observed in
the hyperfine scans.
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Figure 11: (Colour) Eigenvalues of Hamiltonian (61) as function of the
detuning of the first laser, for the specific case of a spin 1

nucleus and spin 1
2 and spin 3

2 ground and excited elec-
tronic states. Note how the purple and cyan curve intersect.

3.2 ionization for multi-level atoms

The naive approach to adding an ionization mechanism to the
description made so far adds factors −iΓ and Stark Shifts to the
diagonal of the bottom right block of (61). These shifts could
be different for each of the excited states. This approximation
represents a starting point rather than the whole story, however.
A more rigorous derivation is presented next.

3.2.1 A Doublet of States coupled to one Continuum

Consider a system with two states with energy ω1 and ω2 that
are both coupled to the continuum by the same laser field with
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frequency ωb Understanding the interaction terms requires re-
peating the derivations carried out in section 2.2, with some ad-
ditional considerations. Applying Schrödingers equation to the
state vector of the system

|Ψ, t〉 = a1(t) + a2(t) +
∫

dεaε |ε,ωε〉 (62)

yields the time evolution of the coefficients a:

iȧ1 = ω1a1 −

∫
dε 〈1 |V(t)| ε,ωε〉 cos (ωbt+Φ)aε, (63)

iȧ2 = ω2a2 −

∫
dε 〈2 |V(t)| ε,ωε〉 cos (ωbt+Φ)aε, (64)

iȧε = ωεaε − 〈ε,ωε |V(t)| 1〉 cos (ωbt+Φ)a1

− 〈ε,ωε |V(t)| 2〉 cos (ωbt+Φ)a2. (65)

Once again, the transformation (38) is used and ∆ε1 = ωε −

ω1 −ωb and ∆ε2 = ωε −ω2 −ωb are introduced. The Rotat-
ing Wave Approximation is then made. Following the methods
applied in section 2.2 then yield

ċ1(t) =−
1

4

∫
dε
∫t
0

dt ′ |〈1 |V(t)| ε,ωε〉|2

× exp (−i∆ε1(t− t
′) + i(Φ(t) −Φ(t ′))) c1(t

′)

−
1

4

∫
dε
∫t
0

dt ′ 〈1 |V(t)| ε,ωε〉 〈ε,ωε
∣∣V(t ′)∣∣ 2〉

× exp (−i∆ε1t+ i∆ε2t
′ + i(Φ(t) −Φ(t ′))) c2(t

′)

(66)

ċ2(t) =−
1

4

∫
dε
∫t
0

dt ′ |〈2 |V(t)| ε,ωε〉|2

× exp (−i∆ε2(t− t
′) + i(Φ(t) −Φ(t ′))) c2(t

′)

−
1

4

∫
dε
∫t
0

dt ′ 〈2 |V(t)| ε,ωε〉 〈ε,ωε
∣∣V(t ′)∣∣ 1〉

× exp (i∆ε1t
′ − i∆ε2t+ i(Φ(t) −Φ(t ′))) c1(t

′)

(67)

These equations allow the identification of interactions not in-
cluded in the intuitive model at the beginning of this section.
The evolution of the two states is coupled, which is made appar-
ent by the third line of equations (66) and (67). The evolution
of the amplitude of one state is also determined by the matrix
elements and amplitudes related to the other state. Using the
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Markov Approximation to simplify equations (66) and (67) res-
ults in

ċ1 =−
c1
4

∫∞
0

dωε |〈1 |V(t)| ε,ωε〉|2 ρ(ωε) [iP(1/∆ε1) + πδ(∆ε1)]

−
c2
4

∫∞
0

dωε 〈1 |V(t)| ε,ωε〉 〈ε,ωε |V(t)| 2〉 ρ(ωε)

× exp [i(∆ε1 −∆ε2)t] · [iP(2/(∆ε1 +∆ε2)) + πδ(∆ε1 +∆ε2)]
(68)

ċ2 =−
c2
4

∫∞
0

dωε |〈2 |V(t)| ε,ωε〉|2 ρ(ωε) [iP(1/∆ε2) + πδ(∆ε2)]

−
c1
4

∫∞
0

dωε 〈2 |V(t)| ε,ωε〉 〈ε,ωε |V(t)| 1〉 ρ(ωε)

× exp [−i(∆ε1 −∆ε2)t] · [iP(2/(∆ε1 +∆ε2)) + πδ(∆ε1 +∆ε2)]
(69)

Define similarly to equations (45) and (46),

Γij(ωε) =
π

2
〈i |V(t)| ε,ωε〉 〈ε,ωε |V(t)| j〉 ρ(ωε) (70)

δωij =
1

2π
P

∫∞
0

dωε
2Γij(ωε)

∆εi +∆εj
(71)

qij =
δωij(t)

Γij(t)
. (72)

Γij contains a product of matrix elements of the coupling of
state |i〉 and |j〉 to the continuum. This enables the interpretation
that the off-diagonal Γij couplings are there because the bound
states are coupled to one and the same continuum, and are hence
coupled to one another. δωij is then an energy shift due to these
couplings. In the off-diagonal couplings a parameter q appears.
The notation q is chosen for historical reasons. This parameter is
called the Fano q parameter [29]. This parameter signifies that the
ionization step also embeds the discrete state in the continuum;
there are now states in the continuum that can be distinguished
from the others. Ionization from a bound state to a continuum
that is structured by the embedding of another bound state res-
ults in enhanced or suppressed ionization rates due to interfer-
ence effects of the ionization channels of these newly embedded
dressed states (see e.g. [30] for a theoretical discussion of this
phenomenon). This can happen in the case of CRIS for suffi-
ciently large ionizing laser powers; the dressed states consisting
of laser photons of the second laser and the states of the excited
multiplet give a certain structure to the continuum. q can be re-
lated to the ratio of the decay rates to the original structureless
continuum and the now structured continuum. Typical experi-
mental values range from 0 to 10 (see [31, 32, 33, 34, 35, 36] for
published values in several different elements).
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With these definitions the equations further simplify and the
time evolution of the amplitudes c1 and c2 can be expressed as
follows:(
ċ1

ċ2

)
=

(
δω11 −

i
2 Γ11 −12 Γ12(q12 + i) exp [i(∆ε1 −∆ε2)t]

−12 Γ21(q12 + i) exp [−i(∆ε1 −∆ε2)t] δω22 −
i
2 Γ22

)(
c1

c2

)
.

(73)

Note that ∆ε1−∆ε2 = ω2−ω1. So, reversing the transformation
(38) will remove the exponentials in the off-diagonal and restore
the energy terms to the diagonal:(
ȧ1

ȧ2

)
= Hion

(
a1

a2

)
=

(
ω1 + δω11 −

i
2Γ11 −12Γ12(q12 + i)

−12Γ21(q12 + i) ω2 + δω22 −
i
2Γ22

)(
a1

a2

)
.

(74)

The Hamiltonian (74) differs from the intuitive version in the
beginning of this section. The diagonal terms are as expected,
but the off-diagonal terms indicate a coupling of the two states.
Note that this coupling is not a direct coupling of the two states
as is the case for resonant excitations, but an indirect coupling in-
duced by the interaction of the discrete states with the common
continuum. There is population transfer among bound states via
the continuum (see figure 12 for a pictorial illustration). The in-
fluence on the ionization spectra is illustrated in figure 13 for
the particular case of a singlet ground state and a doublet of
excited states. This figure shows the difference between a spec-
trum obtained with and without the ionization-induced coup-
lings. The dashed lines indicate the position of the maxima of
the ionization curves. A clear repelling and asymmetrization of
the peaks can be observed. The implications on the hyperfine
parameters that are extracted form such ionization spectra will
be discussed in chapter 5. Considerable effort has been devoted
to understanding how this mechanism can be utilized to get ef-
ficient transfer among bound states, both from the theoretical
viewpoint [31] and the experimental side [37]. Recently, some at-
tention has also been given to the opposite goal, namely that of
avoiding these transfers and optimizing the ionization efficiency
[38]. It is interesting to note that in all of this research the dy-
namic Stark shifts and Fano q parameters play a very important
role. The firing time of the pulsed lasers is also an important
parameter, as is perhaps best illustrated in [38]. This degree of
freedom will be further explored in chapter 5.
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Figure 12: A single ground state resonantly coupled to one of the
states in an excited doublet by laser a. This doublet is then
coupled to the continuum by a second laser b. Left: Pic-
togram of direct ionization events from the discrete states.
Right: Couplings of the dressed states in the continuum.
These couplings lead to interference effects which can alter
the ionization cross section, as is illustrated in figure 13.

Without couplings

With couplings

Figure 13: Two ionization spectra scanned around the doubled levels
in the intermediate state. One obtained by neglecting the
ionization-induced excited state couplings, the other with
these couplings if effect. All the simulations parameter were
the same. In this particular case, the ionization-induced
couplings result in the peaks repelling each other. This is
illustrated by the dashed lines drawn at the frequencies that
result in maximal ionization. Note also the the change in
lineshape due to the interferences in the overlap region.
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3.2.2 An l- fold Multiplet Coupled to one Continuum

Going to l excited states modifies the set of equations (63) - (65)
by adding equations similar to (63) and (64) for each of the ex-
cited states and by expanding equation (65) by adding extra
terms:

iȧ1 = ω1a1 −

∫
dε 〈1 |V(t)| ε,ωε〉 cos (ωat+Φ)aε, (75)

... (76)

iȧl = ω2a2 −

∫
dε 〈2 |V(t)| ε,ωε〉 cos (ωat+Φ)aε, (77)

iȧε = ωεaε −

l∑
α=1

〈ε,ωε |V(t)| α〉 cos (ωat+Φ)aα (78)

By making a change of variables and using the Markov approx-
imation:

ċ1 =−
c1
4

∫∞
0

dωε |〈1 |V(t)| ε,ωε〉|2 ρ(ωε) [iP(1/∆ε1) + πδ(∆ε1)]

−

l∑
α=2

{
cα

4

∫∞
0

dωε 〈1 |V(t)| ε,ωε〉 〈ε,ωε |V(t)| α〉 ρ(ωε)

× exp [i(∆ε1 −∆εα)t] · [iP(2/(∆ε1 +∆εα)) + πδ(∆ε1 +∆εα)]
}

(79)
...

ċl =−
c1
4

∫∞
0

dωε |〈l |V(t)| ε,ωε〉|2 ρ(ωε) [iP(1/∆εl) + πδ(∆ε1)]

−

l−1∑
α=1

{
cα

4

∫∞
0

dωε 〈l |V(t)| ε,ωε〉 〈ε,ωε |V(t)| α〉 ρ(ωε)

× exp [i(∆εl −∆εα)t] · [iP(2/(∆εl +∆εα)) + πδ(∆εl +∆εα)]
}

(80)

In these equations, the diagonal contribution is taken out of the
summation so that the summation in the expression for ċi ex-
cludes α = i. This makes the diagonal and off-diagonal terms
clearer. Make the following definitions (analogous to (70), (71),
(72)):

Γj(ωε) =
π

2
|〈j |V(t)| ε,ωε〉|2 ρ(ωε) (81)

δωj =
1

2π
P

∫∞
0

dωε
Γj(ωε)

∆εj
(82)
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and

Γij(ωε) =
π

2
〈i |V(t)| ε,ωε〉 〈ε,ωε |V(t)| j〉 ρ(ωε) (83)

δωij =
1

2π
P

∫∞
0

dωε
2Γij(ωε)

∆ε1 +∆ij
(84)

qij =
δωij(t)

Γij(t)
. (85)

For a system of l states coupled to the continuum, the Hamilto-
nian Hion in the basis of bare states is given by:

ω1 + δω11 −
i
2 Γ11 −12 Γ12(q12 + i) −12 Γ13(q13 + i) . . . −12 Γ1l(q1l + i)

−12 Γ21(q21 + i) ω2 + δω22 −
i
2 Γ22 −12 Γ22(q22 + i) . . . −12 Γ2l(q2l + i)

−12 Γ31(q31 + i) −12 Γ32(q32 + i) ω3 + δω33 −
i
2 Γ33 . . . −12 Γ3l(q3l + i)

...
...

...
. . .

...

−12 Γl1(ql1 + i) −12 Γl2(ql2 + i) −12 Γl3(ql3 + i) . . . ωl + δωll −
i
2 Γll


(86)

3.3 combining resonant excitation and non-resonant

ionization for multi-level atoms

The total Hamiltonian that describes both resonant excitations
and non-resonant ionizations is found by combining the results
of sections 3.1 and 3.2 (the Stark shifts are absorbed into the
definitions ωfi because of space constraints):



ωi1 . . . 0 gi1,f1 gi1,f2 . . . gi1,fl

...
. . .

...
...

...
. . .

...

0 . . . ωik gik,f1 gik,f2 . . . gik,fl

gi1,f1 . . . gik,f1 ωf1 −ωa − i
2 Γf1 −12 Γf1f2(qf1f2 + i) . . . −12 Γf1fl(qf1fl + i)

gi1,f2 . . . gik,f2 −12 Γf2f1(qf2f1 + i) ωf2 −ωa − i
2 Γf2 . . . −12 Γf2fl(qf2fl + i)

...
. . .

...
...

...
. . .

...

gi1,fl . . . gik,fl −12 Γflf1(qflf1 + i) −12 Γflf2(qflf2 + i) . . . ωfl −ωa − i
2 Γfl



.

(87)
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4
E X P E R I M E N TA L C O N S I D E R AT I O N S

The theory of hyperfine interactions discussed in chapter 1 de-
termines the system the nuclear spectroscopist tries to probe. A
nucleus with spin I and electronic spins J1 and J2 has a total
of min{2I+ 1, 2J1 + 1} states in the ground state multiplet and
min{2I+ 1, 2J2 + 1} in the excited state multiplet. The theory in-
troduced in chapters 2 and 3 leads to a system of coupled dif-
ferential equations, one for each of the hyperfine states, that can
only be solved with numerical methods for all but the simpletst
two-level case. The theory developed in chapters 2 and 3 does
not take into account the full experimental conditions, however.
This section explains how the simulations will bridge the gap
between the exact theory and the experimental circumstances.

4.1 input parameters

The implementation of the simulation procedure was written in
Python v2.6. This package relies on fast numerical algortihms im-
plemented by the NumPy and SciPy packages [39]. A Graphical
User Interface (GUI) was also written using the Tkinter library.
This GUI allows full control over all of the physical parameters,
starting from input .txt files like those shown in appendix B. It al-
lows the user to easily compare the populations of the hyperfine
states or the ionization spectrum for different parameters.

The units are always mentioned in the parameter description.
Whenever two numbers appear below a single name, those two
quantities are stored as lists. For instance, the A parameters are
stored as [Alower,Aupper].

The photo-ionisation cross section is used to calculate the ion-
ization parameters Γi, since it is the product of this cross sec-
tion with the laser power of the second laser. An approximation
that is always made is to assign the same ionization rate Γ to
all states belonging to the same hyperfine multiplet. This also
means that the off-diagonal Γij are equal to the same Γ . So, even
though it is in principle possible to calculate all of the Γ ’s from
first principles using (81) and (83), the experimentally tabulated
cross sections will be used.

The laser intensity is entered into the code in the dimensions
of energy per pulse, and is divided by the area of the laser
beam to provide the intensity per unit area. This quantity is
then used throughout the calculations. The duration of the laser
pulses also plays an important role, since they determine the

33
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laser power densities Pi of both lasers. The pulses are assumed
to be Gaussian-shaped in time, but this can be changed. The
temporal separation of the two lasers can also be changed. The
oscllator strength is used in the calculation of the resonant inter-
action parameters g, as explained by equation (14).

It is also possible to simulate the effects of cw-excitations by
entering the total energy the atoms or ions are subjected to when
travelling through the laser beam and by choosing a flat pulse
shape (for example, if the atoms travel through the beam in 3µs,
multiply the power of the laser by 3µs and put that number in
the .txt file).

With this, all of the parameters appearing in the Hamiltonian
of the system (87) have been linked to the input parameters, ex-
cept for the Fano parameters q and the Stark shifts δωi. The
effect of the Stark shifts δωi is understood easily as a shift of
the energy levels. The influence of the Fano q parameter is less
clear and will be investigated later. The algorithm that will be
used from now on will be further developed to better reflect the
actual experimental conditions. Two experimental effects will be
included:

1. Spatial laser profile. The laser intensity is usually not con-
stant throughout the cross section of the laser beam. The
ensemble of atoms is not subjected to just one laser power
P1, but rather a distribution centered around this value at
any instantaneous moment in time t. Also, the laser field
fluctuates shot-by-shot. Therefore not every atom experi-
ences the same electrical laser field. The total ionization sig-
nal will therefore be a sum of Rabi oscillated signals with
many different periods, since it is a result of many atom-
laser interactions. These laser fluctuations are all taken into
account by averaging the simulated spectra over a range of
powers.

2. Temporal laser pulse shape. CRIS uses pulsed lasers, and
therefore the power output of the laser depends on time.
Typically, the laser pulse shape is roughly Gaussian with a
full width half maximum of the order of 10 nanoseconds.
The pulse shape can have important consequences on the
response of the system (see chapter 6). The Hamiltonian
will be time-dependent, which will impact the simulation
procedure as is outlined below (section 4.2).

These two effects will completely remove the Rabi Oscillations
from the simulated state populations and ionization spectra, fa-
cilitating analysis and interpretation of more complicated multi-
level simulations. This will not remove the coherent effects but
will rather average the coherent effects over a certain range.
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A remark on the laser linewidth should be made at this point.
Lasers emit a spectrum of wavelengths, not just a single one. So
far, the response of an atomic system subjected to a single cav-
ity mode has been treated. Going towards realistic lasers with a
non-delta function linewidth would in principle mean that for
every detuning, the response of the system to the whole emis-
sion spectrum of the laser would have to be calculated. This is of
course very resource intensive, so a faster option is to just calcu-
late the response to a single laser wavelength and to then take a
convolution of the ionization spectra and population profiles. If
the laser linewidth is broader than the resonances, they will of
course be broadened.

This approach is only approximately valid. Consider for ex-
ample the case of a fully saturated transition and a laser line-
width twice as large as the natural linewidht. Convoluting the
simulated spectra with this broader lineshape will result in a
reduction of the ionization efficiency by a factor of two, since
the lineshape becomes broader while keeping its integral con-
stant. Experimentally, however, the ionization efficiency will not
be reduced very much, since the transition is heavily saturated.
Even though only about half of the power in the laser beam is
actually used to excite electrons, this reduced power is still suf-
ficient to saturate. In other words: convoluting spectra results in
lineshapes with the correct width, but the total ionization effi-
ciencies or saturation curves are unreliable.

For the reasons mentioned in the above two paragraphs, the
effect of the laser linewidth is not taken into account for the
simulations in this work; all excitations are assumed to be nar-
rowband.

4.2 algorithm

The algorithm can be broken down into three separate blocks.

1. The input and initialization phase. In this step, the para-
meters are read in from either an input file or from the
GUI. With these parameters, Python objects are made for
the hyperfine states and the Hamiltonian. Each hyperfine
state has a certain total angular momentum F, so there are
2F+ 1 possible F projections to take into account. The lin-
ear polarization of the laser light imposes a selection rule
∆m = 0 which implies that small Hamiltonians can be con-
structed for each possible angular momentum projection.
The total Hamiltonian H is then constructed as a concaten-
ation of these smaller matrices.

2. The calculation phase. The central piece of code is solving
the Von Neumann equation for non-Hermitian Hamiltoni-
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ans, which is the density matrix version of Schrödingers
equation:

i
dρ
dt

= Hρ− ρH† (88)

The reason for using a density matrix is that it makes it
easier to add effects like spontaneous decay later on, since
spontaneous decay is typically formalized using density
matrices. The solutions can be found by matrix exponenti-
ating (for time-independent Hamiltonians);

ρ(t) = exp(−iHt)ρ(0) exp(−iH†t). (89)

The Hamiltonian can be time-dependent if the lasers are
pulsed. The approach is then to discretize this smooth ex-
citation pulse into a step-like function and to solve

ρ(t) = exp
(
−i

∫t1
t0

Hdt ′
)
ρ(0) exp

(
−i

∫t1
t0

H†dt ′
)

≈ exp

(
−i
∑
k

Hk∆t

)
ρ(0) exp

(
−i
∑
k

H
†
k∆t

)
=
∏
k

[
exp (−iHk∆t)

]
ρ(0)
∏
k

[
exp

(
−iH†k∆t

)]
.

(90)

The matrix exponentiations are done numerically by us-
ing a Numpy algorithm based on Pade approximants. This
approach is very stable [40]. All results presented so far
were obtained by calculating the density matrix at time t
for laser frequencies in a user-defined range using relation
(89) or (90).

Taking into account the two effects described above (the
temporal laser pulse shape and the spatial laser profile)
requires looping over the calculations twice; one for each
effect. The user can define how many iterations are needed
in each of these loops.

3. The Wrapping-up phase. The state objects are assigned
their populations for each frequency and time. The total
ionization rate is calculated. If needed, the laser linewidth
is taken into account by a convolution of the spectra. If
asked, the results are stored in .txt files and figures are
saved. The population of all of the state objects can be plot-
ted and manipulated using standard python plotting tools,
or by using the GUI plotting tool.

Expressed in pseudo-code, the algorithm is as follows:



4.2 algorithm 37

Listing 1: Pseudo-code algoritm followed by the simulation code.

#--------------------------#

# Input and initialization #

#--------------------------#

Read Parameters

Make Objects

#--------------------------#

# Calculation #

#--------------------------#

for position in space:

{

for time in timerange:

{

for frequency in scanning range:

{

Use laser power(position, time)

Solve using Von Neumann

}

}

}

Average over space

#--------------------------#

# Wrapping up #

#--------------------------#

Calculate populations and ionization rate (time, space)

Concolute if required

Save files, make figures, plotting,... �
This is the algorithm that will be used for all of the simula-

tions in the next chapters. First, the effect the two outer loops
in Algorithm 1 have on the simulated lineshapes and their time
dependence will be investigated.

4.2.1 Influence of the Spatial Laser Profile

As outlined earlier in this chapter laser power fluctuations and
the spatial non-uniformity of the laser power require averaging
the simulations over several different laser powers. The assump-
tion is that the power can be up to 50 percent lower near the
edge of the atom beam than near the center. The period of a
Rabi Oscillation for a two level atom was presented in equation
(33):

P0,n = sin2(2θ) [1− cos (Ωt)] , (33)

where Ω = λ+ − λ− =
√
4g2(t) +∆201.

The factor 1 − cos (Ωt) is averaged to one in experiments due
to coherence losses. These coherence losses are simulated in al-
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gorithm 1 by applying a laser power distribution rather than a
single laser power. This will dampen the oscillations in time, as
can be verified by looking at the population of the excited state
when the system is subjected to a cw laser beam with a certain
laser power distribution (without the second laser present).

Analytical calculations can be made to predict the evolution of
the ensemble under these circumstances. On resonance ∆01 = 0,
equation (33) simplifies to

P0,n(g, t) =
1

2
[1− cos (gt)] . (91)

Suppose this population has to be averaged over laser fluctu-
ations uniformly distributed in

[
1
2Pav, 32Pav

]
so that g is uni-

formly distributed in
[√

1
2gav,

√
3
2gav

]
. The average population

is then given by

Pav
0,n(t) =

1

2
(√

3/2−
√
1/2
)
gav

∫√3/2gav

√
1/2gav

dg [1− cos (gt)]

=
1

2

−sin
(√

3/2gavt
)
− sin

(√
1/2gavt

)
2
(√

3/2−
√
1/2
)
gavt

 . (92)

This result illustrates that the oscillations are damped with time
as 1
gavt

. Numerical simulations are plotted in figure 14 for gav =

1 (dashed line) and gav = 20 (full line). The averaging procedure
will be more effective for high powers than for low powers.

This dampening in time will be important in chapter 6 (though
not strictly necessary), where the effect of separating the excita-
tion pulse from the ionization pulse is investigated. The results
of the simulations would depend very strongly on when the ex-
citation pulse ends if the Rabi oscillations are not removed from
the simulations. This does not make the analysis impossible, but
it does make interpretation more involved.

The smoothening of the Rabi oscillations in time is also reflec-
ted in the frequency spectrum of the populations: the oscillations
visible in figure 4 are dampened slightly (see figure 15). Imple-
menting a smooth pulse shape will actually remove these fre-
quency oscillations completely, which will be shown in section
4.2.2.

4.2.2 Influence of the Temporal Laser Pulse Shape

Switching from cw lasers to pulsed lasers requires a time de-
pendent Hamiltonian. Both lasers can be pulsed, and the delay
between the pulses can be changed. It is assumed that the laser
pulses have a Guassian shape, but different pulse shapes are
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Figure 14: Expression (92) illustrated for gav = 1 (dashed line) and
gav = 20 (full line). Note the 1

gavt
dampening; the popula-

tion evolves to 50 percent in all cases.

∆01

P1n

Figure 15: Population of the excited state as function of detuning, with
averaging over the spatial laser profile taken into account.

also possible. When the spatial and temporal pulse shape are
taken into account (so algorithm 1 is completely followed), res-
ults like figure 16 are obtained. This figure shows the population
of the excited state as a function of detuning half-way through
the excitation pulse, in absence of ionization. The oscillations
have been removed (compare to figure 4 or 15). For complete-
ness, a plot of the population on resonance as function of time
is shown on the right, with an arrow that indicates the time at
which the spectrum on the left is produced. Note the similarities
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∆01

P1n

Time (ns)

∆01 = 0

Figure 16: The excited state population on resonance as function of
time (right) and the population of the excited state as func-
tion of detuning (left). The time indicated with the large
arrow on the right plot is the time at which the left plot is
made.

with figure 14.

The implementation of the temporal pulse shape and the ad-
dition of a spatial averaging mechanism allows for a realistic
simulation of experimental ionization spectra. The next chapters
will explore the possibilities provided by the procedure outlined
in this chapter.
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S Y S T E M AT I C E F F E C T S O N L I N E S H A P E S F O R
S I M U LTA N E O U S E X C I TAT I O N A N D
I O N I Z AT I O N

This chapter will investigate the systematic effects predicted by
the theory developed in chapters 2 and 3 and the algorithm for
the simulations presented in chapter 4. It has been highlighted
that the couplings of the discrete electronic states can lead to sys-
tematic deviations in peak-to peak distances of ionization spec-
tra. The additional couplings induced by the ionizing laser can
also adjust lineshapes. This chapter sets out to study these ef-
fects in some detail, both qualitatively and quantitatively. The
latter will be done by simulating ionization spectra and then fit-
ting them using the standard fitting lineshapes used in hyperfine
laser spectroscopy.

This standard fitting procedure consists of summing several
pseudo-Voigt profiles at positions calculated with equation 5 and
by performing a least-squares optimization, with free paramet-
ers A, B and the intensities of the peaks. The pseudo-Voigt pro-
file fpV

fpV(x) = (1− η)fGauss(x,γG) + ηfLorentz(x,γL), (93)

is an approximation to a Voigt profile, which in turn is the con-
volution of a Lorentzian of width γL and a Gaussian profile
of width γG. Note that η,γG,γL are also free parameters. The
parameter η expresses how strong the Lorentzian component is
relative to the Gaussian component. The reason why pseudo-
Voigt profiles are used rather than Voigt profiles is that they re-
quire significantly less computing time and yet are sufficiently
precise [41]. The use of both Lorentzian and Gaussian compon-
ents reflects two different mechanisms that lead to broadening
of resonance profiles; these are homogeneous broadening and
inhomogeneous broadening.

If the cause of the broadening is the same for every atom, it is
homogeneous, and the resulting profile will be Lorentzian. Ex-
amples are power broadening or collisional (pressure) broaden-
ing: all atoms experience the same laser powers or pressure. If on
the other hand the broadening is the result of a process that var-
ies in size from atom to atom, the profile will be Gaussian. The
most common example here is Doppler broadening; every atom
has a slightly different velocity. The effect of multiple broaden-
ing mechanisms can be taken into account by convoluting their
respective profiles. Since the convolution of two Gaussians is

41
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once again Gaussian and the convolution of two Lorentzians is
once again Lorentzian, all broadening mechanisms can be de-
scribed by a Voigt profile.

The goal of this chapter consists of two intertwined sub goals:

1. What is the influence of the coherent (homogeneous) laser
couplings on the lineshape? In other words, to what extent
does the lineshape deviate from a pseudo-voigt?

2. How is the position of the resonances influenced by the
coherent interactions? Is there a noticeable effect on the
fitted hyperfine parameters?

This chapter will generate ionization spectra using the model
introduced in previous chapters. These ionization spectra will
then be fitted using the fitting model described above. The simu-
lation strategy will focus on two cases, illustrated schematically
in figure 17. Typical simulations values are shown in file B.2.

The two cases under investigation are a ground state doublet
with one excited state and an excited doublet with only one
ground state. Both laser powers will be varied to gauge their
impact.

Figure 17: The two physics cases under investigation: a ground state
doublet with an excited singlet and a singlet with an excited
doublet that is coupled through the continuum.

After this, the influence of the fano q-terms is investigated by
looking at a simple system consisting of one ground state and
an excited doublet for several values of q.

Once these simple cases are understood, an example will be
presented to make things more quantitative and concrete; sec-
tion 5.2 will investigate the hyperfine structure of 57,59,63,65Cu
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in some more detail. These isotopes are of particular interest be-
cause a recent in-gas cell laser ionization experiment [42, 43]
obtained hyperfine A parameters that were slightly different
from a high-resolution fluorescence laser spectroscopy experi-
ment [44]. This mismatch could be due to the laser-induced
couplings which are present in the laser ionization experiment.
The hyperfine structure of the transition that was used consists
of a ground state doublet and an excited state doublet. This
makes it a generalization of the cases studied in the earlier parts
of the chapter.

5.1 simulation results

The results of the simulations for the two cases are shown in
figure 18. This figure shows the relative deviation of the fitted
hyperfine parameters with respect to the assumed value in the
simulations. This is done for several different laser power com-
binations and input A parameters. The laser powers are never
taken higher than saturation values, since this would generally
also not be done in experiments. The inset shows a pictorial rep-
resentation of the atomic system. The scale on the x axis is the
fitted hyperfine splitting divided by the fitted FWHM, a measure
for the resolution of the experiment. Note how the fit overestim-
ates the upper splitting but underestimates the lower splittings.
Note also the scale on the y axis; deviations of several tenths
of percent are possible for very poorly resolved structures. A
correlation between the relative deviation and the power in the
excitation step appears to exist for the extracted values of Alow.
However, the power of the ionization step still has a small in-
fluence. Similarly, the extracted Aup appears quite strongly cor-
related with the ionizing laser power but is also not completely
independent of the power in the first laser step.

The results in this section provide clear examples that care is
needed when interpreting RIS spectra. If the peaks of the spec-
trum start overlapping (Afit < 3 FWHM), the extracted hyper-
fine splittings can significantly shift from the true, bare-atom
values. The laser power in both steps plays an important role.
This makes correcting experimental spectra nontrivial. Section
6.1.3 will present a way of reducing the complexity of the prob-
lem by removing all effects due to the ionizing laser by adjusting
the delay between the two laser pulses.

If both the ground state and the excited state are split into
two or more states, the interpretation of the ionization spectra
is further complicated, especially if the ratio of the hyperfine
splittings is fixed in the fitting procedure (to a ratio determined
by the study of stable atomic beams). The increase in the fitted
excited multiplet splitting and the decrease in the fitted ground
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Figure 18: Relative deviation on extracted hyperfine parameters for
several different laser power combinations and input A
parameters. The scale on the x axis is the fitted hyperfine
splitting divided by the fitted FWHM, which is a measure
for the resolution of the experiment. Note how the fit over-
estimates the upper splitting but underestimates the lower
splittings. Note also the scale on the y axis; deviations of sev-
eral tenths of percent are possible for very poorly resolved
structures.

state splitting then have to compete with each other, making the
accuracy of the final fitted values uncertain. To illustrate this
point, an example with experimental data will be discussed in
section 5.2.
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5.1.1 Part III: Influence of the Fano q Parameter

The effect of the Fano q parameter introduced by equation (72)
on the lineshapes is illustrated by figures 19. This figure shows
examples of spectra at different values q. These figures were
made at a quite high ionizing laser power of 25 mJ. The dashed
lines on the left plot of figure 19 indicate the center of gravity of
the two resonances. As the Fano parameter increases, this cen-
ter shifts to lower wavelengths. This figure also shows that the
peak-to-peak distance increases significantly. The right plot of
figure 19 illustrates what happens for very large Fano factors:
the two peaks become asymmetrically broadened and the cen-
ter of gravity shifts quite dramatically. This asymmetrical power
broadening is a result of the interferences between the different
ionization channels to the dressed states that are embedded into
the continuum by the the ionizing laser. To our knowledge, such
asymmetric lineshapes have not been detected in resonance ion-
ization laser spectroscopy experiments. For lower Fano factors,
the main effect is the shifting of the center of gravity and the
peak-to-peak distances. Recall also that typical values of q are
less then 10.

q = 0

q = 2.5
q = 5

q = 5

q = 15

q = 25

Figure 19: Five ionization curves, with Fano factors of respectively
0,2.5,5,15 and 25. For the three spectra shown on the left,
the dashed lines indicate the center of gravity of the two
resonances.

5.2 application : in-gas-cell laser spectroscopy of

the neutron-deficient cu isotopes

In two recent papers Cocolios et al. presented in-gas-cell laser
spectroscopy measurements of neutron deficient Cu isotopes [42,
43]. This data was gathered using a two-step laser ionization
scheme, but in different conditions than CRIS. Due to the pro-
duction methods of the radioactive isotopes, the atoms have a
large velocity spread and pass through a region of very high
pressure. The high pressure results in a reduction of the life-
time of the excited states due to collisional de-excitations. The
velocity spread and the collisions result in Doppler broadening
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and pressure broadening respectively. While Doppler broaden-
ing can be taken into account by simply convoluting the simu-
lated lineshapes with Gaussian profiles of the appropriate width,
pressure broadening is not trivially implemented within the con-
text of the model.

For some isotopes the A parameters extracted in [42] and [43]
deviate from the values obtained using high-resolution fluores-
cence laser spectroscopy [44]. The fitting approach of the in-gas
cell experiments was to fix the ratio of Aup and Alow and to
fit the ionization spectra with a set of Voigt profiles. This sub-
section investigates whether or not the discrepancy between the
high-resolution fluorescence data and the in gas-cell data is due
to the fact that this fitting model does not take into account the
effects that were discussed earlier in this chapter.

In 59Cu the fittedA parameters are about 1 percent larger than
in [44]. For 58Cu, the extractedA parameters are 16 percent smal-
ler than in[44]. Figures 20 and 21 show the experimental spectra
taken from [42] and [43]. Table 1 summarizes the essential val-
ues.

Gas cell Collinear

Isotope Aup[42] Aup[44] Aup[42]/Aup[44]

58 1891(52) 2257(9) 0.84(2)

59 5033(10) 4989.6(24) 1.009(2)

Table 1: Summary of literature values of the hyperfine A parameter.

The influence of the laser-related homogeneous broadening on
the extracted A parameters can be investigated by performing
simulations at the laser powers and laser specifications used by
Cocolios et al (explained in detail in [45]). Since pressure broad-
ening is not included in the model the resulting lines will be
much narrower than the experimental data. Note that the laser
linewidth is 1.6 GHz, while the natural linewdith of the reson-
ances is 1 MHz [46]. Therefore, neglecting pressure broadening,
only a fraction (6.25× 10−4) of the total laser power can actually
be used for the excitations. Simulations should be convoluted
with a 1.6 GHz FWHM Gaussian to take the Doppler broaden-
ing into account. Making the simulations with the actual split-
ting of the hyperfine levels and the experimental laser powers
will result in resonances with an energy separation many times
their width. As figure 18 suggested, no shifts in the peak-to-
peak positions will therefore be observed. Some information can
nevertheless be obtained from the simulations by downscaling
the A parameter so that the simulations match the experimental
spectra. This reflects the idea that it is the energy difference re-
lative to the resonance width that is the important variable: a
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system with resonances that are a few GHz wide and have an
splitting parameter of several GHz due to pressure broadening
could be considered approximately equivalent to a system with
resonances that are a few MHz wide with a splitting that is re-
duced accordingly.

File B.3 shows the simulation settings. The simulations are con-
voluted with a 1.6GHz FWHM Gaussian to take the Doppler
broadening into account. The fitting approach is as follows: a
Voigt profile is used for each component of the hyperfine spec-
trum. The upper hyperfineA parameter is constrained as follows
(based on measurements in an atomic beam unit):

Aupper = 0.414×Alower. (94)

This is also the approach taken by Cocolios et al. This fitting
routine does not take into account the laser-related couplings
that have been discussed earlier in this section into account. This
could lead to an incorrect extraction of the hyperfine parameters.
Figures 20 and 21 show the results of the simulations and the
corresponding fits. Note the close agreement of the relative peak
intensities. A summary of the results is shown in table 2.

Isotope Aup[42]/Aup[44] Aup/Ainput

58 0.84(2) 1.04(1)

59 1.009(2) 1.008(3)

Table 2: Summary of literature and simulated ratios of the hyperfine A
parameter. The experimental data is divided by the result ob-
tained with the collinear laser spectroscopy measurement by
Vingerhoets et al [44] while the simulated values are normal-
ized to the input A parameter.

The table illustrates how for 59Cu, the couplings induced by
the ionizing laser result in an increase in the fitted A-parameter,
which could explain the discrepancy between the gas cell data
and the collinear data. The order-of-magnitude of the effect is
reproduced by the simulations. The reduced A-parameter ob-
tained in [42] for 58Cu is not reproduced in the simulations.
However, fitting four hyperfine peaks underneath such an un-
resolved structure is nontrivial; the positions and width of the
peaks are very strongly correlated, which could have been un-
dervalued by previous analysis. For example, a reduction of the
intensity of the rightmost peak is easily compensated for by mov-
ing the third peak further to the right.
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Figure 20: Simulations and experimental data for 59Cu. Top: Simula-
tion (dots) and the fit (line). Bottom: Experimental data from
[42].
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Figure 21: Simulations and experimental data for 58Cu. Top: Simula-
tion (dots) and fit (line). Bottom: Experimental data from
[42].
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The combination of the inherent timing structure of a pulsed
laser with laser ionization and subsequent ion detection provides
the experimentalist with an interesting freedom: the possibility
to choose when to probe the population of the excited state. The
exploration of this additional degree of freedom and the implica-
tions it has for spectroscopy have only recently been investigated
theoretically and experimentally (see e.g. [17, 47, 48]).

The previous chapters have always dealt with the case of sim-
ultaneous excitations and ionizations. The ionizing laser per-
turbs the energy levels and since the excitations take place while
these perturbations are present, they can be seen in the ioniza-
tion spectra. If on the other hand the second laser is only firing
after the first laser has stopped, the energy levels will only be
perturbed after the excitations have probed them. This means
that the ionization spectra will not show any of the ionization-
related lineshape distortions. This will be investigated in section
6.1.3.

Another issue that could be addressed by exploiting the tim-
ing properties of the two laser fields is the issue of power broad-
ening (explained in section 2.4 earlier in this document) . Power
broadening due to the second laser is avoided completely if the
second laser pulse arrives after the excitation laser pulse, for the
same reasons explained in the previous paragraph. The states
do get broadened by the second laser, but they only broaden
after they have been probed; the broadening will therefore not
be recorded. But there is more; power broadening due to the
first laser can also be reduced significantly (and in some cases
avoided entirely).

6.1 separated laser pulses and precision

Applying pulsed laser excitations to an atomic system adds an
explicit time dependence to the Hamiltonian. The effect this has
on the evolution of the population of this system is the subject
of the next section. After the influence of pulsed lasers is un-
derstood, an ionization pulse will be added to the description.
Sections 6.1.2 and 6.1.3 will then discuss how the relative timing
of the excitation and ionization pulse can be used to improve
respectively the precision and accuracy of RIS.

49
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6.1.1 Pulsed Laser Excitation

Consider a simple two-level system subjected to only a pulsed
resonant excitation laser. The evolution of such a system is de-
scribed by the following Hamiltonian (in the adiabatic basis):

iȦ(t) =

(
λ− −iθ̇

iθ̇ λ+

)
A(t). (32)

The name ‘adiabatic states’ can now be explained, using the
adiabatic theorem (originally formulated by Born and Fock [49])
states (translated from German):

“A physical system remains in its instantaneous ei-
genstate if a given perturbation is acting on it slowly
enough compared to the gap between the eigenvalue
and the rest of the Hamiltonian’s spectrum".

The gap in the energy spectrum determines a unit of time by di-
viding the energy gap by  h, and therefore allows for a definition
of what ‘slow’ actually means (although there is theoretical work
devoted to defining an adiabatic theorem for systems without
such a gap, allowing study of system with crossing levels rather
than mixing levels [50]). For dynamics (32) the adiabatic theorem
states that the excitation process is adiabatic if [17]:∣∣θ̇(t)∣∣� λ+ − λ− (95)

Because the perturbation slowly varies in time, the system has
time to adapt its configuration. The state vector of the system can
keep up with the vector |−,n〉 as it evolves through time (see
figure 22 for a schematic idea of how the vector |−,n〉 evolves
when subjected to a gaussian pulse). If this condition is not met,
the process is diabatic and the state vector of the system will
have trouble adjusting its configuration. The state vector will lag
behind. This means that the population can stay in the adiabatic
state throughout the excitation pulse. Note that at the beginning
and the end of the excitation pulse θ = 0; the adiabatic and bare
states are uniquely identified with one another.

Suppose the population is initially in |0,n〉 = |−,n〉. If the
evolution of the system is adiabatic, it has time to adapt in such
a way that the population stays in the adiabatic state |−,n〉. At
the end of the excitation pulse, the population is still in |−,n〉.
Since |−,n〉 is the same as |0,n〉, no net population remains in
the excited state |1,n− 1〉. Note that the electrons do make a
brief excursion from the state |0,n〉 to |1,n− 1〉, but they end
up in |0,n〉 eventually. This process is referred to as adiabatic
population return. On the other hand, if the evolution is non-
adiabatic, population initially in |0,n〉 = |−,n〉 will evolve into
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Figure 22: Left: Evolution of the state vector |−,n〉 when the system is
subjected to a gaussian laser pulse. Right: the mixing angle
θ(t). On resonance, the angle becomes π2 when the power
is maximal. If the evolution of the system is adiabatic, the
state vector of the system follows that of the vector |−,n〉,
and no net population remains in |1,n− 1〉 after the pulse. If
the evolution is non-adiabatic, the state vector of the system
lags behind so that some population remains in |1,n− 1〉.

a superposition of the two adiabatic states during the exciation
pulse, which means that some of the population will have left
the ground state |0,n〉 and will have transferred to |1,n− 1〉 at
the end of the evolution. The maximal transferred population is
50%.

Figure 23 A reveals both kinds of processes occur during co-
herent photon excitation. This figure shows the population of
the excited state of a two-level system as a function of time and
as a function of the detuning of the excitation laser. The laser
pulse shape is Gaussian as a function of time and there is no
ionization laser.

Note that there is a considerable adiabatic component to the
excitations when the laser is tuned off-resonance: after an excur-
sion to the state |1,n〉, there is adiabatic population return to
|0,n〉. This is illustrated in figure 23 C for a detuning ∆01 = 0.
However, for sufficiently small detunings, the population dens-
ity is irreversibly changed; the population remains in the excited
state even after the excitation pulse. This is illustrated in figure
23 D for a detuning ∆01 = c. Note also the Rabi Oscillations
that are damped in time due to the coherence loss mechanisms
outlined in chapter 4.

An ionization laser can probe this excited state population.
The time at which this second laser is fired is crucially import-
ant for the experimental linewidth. If the second laser is fired
simultaneously with the first laser, atoms will be ionized in es-
sentially the entire detuning range shown in figure 23. This is
further illustrated in plot B of this figure by showing the pop-
ulation as a function of the detuning at a time t = a. If on the
other hand the second laser is fired after the excitation pulse has
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passed, there will only be ion production within a small detun-
ing range, as can be seen on figure 23 B for t = b. The width
of the resonances as measured by ion detection will therefore be
severely reduced in the second case.

The next question deals with the observables that determine
the width of the region in which the population evolves non-
adiabatically, since this will determine the experimental linewidth.
The adiabatic condition (95) can be used to estimate this non-
adiabatic detuning range. It can in principle depend on the laser
power and the pulse length T . Detailed analysis reveals that the
pulse shape is another important factor in determining the de-
pendence of the detuning range on the pulse length and the laser
power. Three important bell-shaped examples will be discussed
and expressions for the non-adiabatic detuning ranges will be
provided (the calculations can be found in [47], a graphical illus-
tration that supports these calculation is shown in appendix A).
These analytical formulas can be determined by (often tedious)
manipulations of the adiabatic condition (95).

1. Gaussian pulse shape
A first class of pulse shapes is the Gaussian shape. For
these pulses, the maximal non-diabatic detuning range is
given by

∆max ∝
√

logg/∆max

T
. (96)

In other words, population can only remain in the excited
state after in the excitation within a frequency range that
depends logarithmically on the laser power. Additionally,
if the pulse time is longer, this range is reduced accordingly.
Gaussian shapes are probably the more common shapes
realized by most laser systems, so verification of the log-
arithmic power broadening dependence is also the most
abundant [17, 48]. Figure 24 shows a parametric plot of
this equation as well as a plot of y = log x for comparison.

2. Sechn pulse shape
The sechn-like shapes are a family of pulses with a par-
ticularly easy analytical maximal non-adiabatic detuning
range:

∆max =
n√
2T

+
22/n

23/2+1/n
1−n

g2/nT2/n+1
(97)

Interestingly, for n = 1, this reduces to

∆max =
n√
2T

; (98)

the maximal non-diabatic detuning range is completely in-
dependent of power. This means that there is no power
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Figure 24: Illustration of the expression (96). For comparison, y = log x
is also plotted.

broadening at all; the width of the excitation spectrum
after the actual excitation step is completely independent
of power. Note also how an increased pulse length facilit-
ates satisfying the adiabatic condition.

3. Lorentzian pulse shape
For Lorentzian pulses, the maximal excitation linewidth is
given by

∆max =
3
√
3

4gT2
. (99)

In other words, the maximal linewidth actually decreases
with power. This is perhaps one of the most striking ex-
amples of how pulsed laser excitation differs from cw laser
excitation.

If the pulses are not bell shaped, it is not the pulse length that
determines the power dependence of the resonance widths, but
rather the shape of the falling edge and its fall time. For example,
if the pulse shape has a Gaussian falling edge with a fall time T ,
result (96) should be recovered.

Note that results (96,97) and (99) are obtained in absence of
any spontaneous decay. The natural linewidth of the electronic
states that is due to this spontaneous decay imposes a lower limit
on the energy distribution of the electrons. So, for a two-step
exciation-ionization scheme, increasing T will reduce ∆max up
until the natural linewidth, but no further. Similarly, the power
narrowing effects for Lorentzian shapes will only narrow the
resonances up to the natural linewidth.

Note also that for simultaneous lasing using equation (52) in-
stead of (32) reveals that the factors iΓ lead to a breakdown
of adiabaticity, which leads to a recovery of the normal power
broadening phenomena discussed in section 2.4 [17].
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In summary, the post-excitation population of the excited state
shows much narrower resonances than the population during
the excitation pulse. This is due to the adiabatic evolution of
the system outside of a certain detuning window. This window
is determined by the pulse length: increasing this pulse length
makes the resonances narrower (until the natural width is ob-
tained). Depending on the pulse shape, the energy distribution
of the electrons can either experience power broadening, be in-
dependent of power or even undergo power narrowing.

6.1.2 Time-Separated Laser Pulses and Precision

If the second laser is not present during the excitation step, the
ionization spectra will inherit the width of the excited state pop-
ulation. This linewidth is significantly less then what would be
obtained for simultaneous laser pulses. This is also due to the
fact that the power broadening due to the second laser is also
removed completely, as was already mentioned in the beginning
of this chapter.

These two aspects are illustrated in figures 25 and 26, which
show the linewidth of resonances as function of the power dens-
ity of respectively the first and second laser, with both lasers
modeled as Gaussian pulses with a full width at half maximum
of 20ns. The simulations could of course be repeated for arbit-
rary spatial profiles. Both graphs show this linewidth for sim-
ultaneous laser pulses and for separated pulses. The first figure
(figure 26) shows how the standard power broadening effects as
described in section 2.4 are reduced to a very weak logarithmic
dependency on power as the two pulses are pulled further apart.
In this plot, a rescaled laser power of 1 is already very deep in the
saturation region, proving that the theoretical description holds
up even for very high laser powers. There are still some oscilla-
tions on top of this logarithmic behavior due to the approximate
nature of the numerical simulations.

Figure 26 shows very clearly that all power broadening due
to the second laser is removed. Power broadening due to the
first laser is also reduced significantly (as was shown on figure
25, which is why the width at very low powers drops from 200

MHz to 120 MHz.
By separating the laser pulses there will be a relaxation of

some of the population in the excited state to the ground state.
Depending on the choice of transition this relaxation can be re-
duced. There is also an upper limit to the total efficiency of the
two-step ionization, since at most 50 percent of the population
can be excited by the excitation pulse. In the case of simultan-
eous pulses, 100 percent efficiency could in principle be reached;
the second laser constantly takes electrons to the continuum, and
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Figure 25: Linewidth as function of a rescaled power in the first step,
shown for several delays between the first and the second
laser. The pulses are 20ns long. A rescaled power density
of 1 is already very deep in saturation. The power in the
second step is constant for all points on this figure and is
very deep in the saturation region.

an equilibrium distribution is only attained when both states are
empty.

Figure 26: Linewidth as function of power in the second step (in mJ per
pulse), shown simultaneous and delayed laser pulses. The
pulses are 20ns long. The power in the first step is constant
and near saturation for all points on this figure.
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6.1.3 Time-Separated Laser Pulses and Accuracy

In chapter 5 it was demonstrated how the presence of an ionizing
laser during the excitations can lead to modification of the ioniz-
ation spectra which in turn results in incorrect extraction of the
hyperfine splitting parameters. Figure 18 in particular demon-
strated large power-dependent deviations. The previous section
of this chapter argued that delaying the ionization until after
the excitation step removes power broadening due to this ion-
ization laser since the electronic states are only perturbed after
their energetic structure is probed by the first laser. This argu-
ment explains equally well why all ionization-related deviations
in fitted energy splitting should disappear if the ionization step
is separated in time from the excitation step; the system is only
perturbed after the energy levels are probed.

Figure 27 illustrates this statement. The data shown is simu-
lated using the exact same simulations setting as 18, but with a
delay of 75ns instead of 0 ns (the pulse length of both lasers is
25ns). Note how it is only the first laser power that determines
the relative deviation between the fitted and real value. Note
also how this deviation is significantly lower for the data ob-
tained with the delay. This is further illustrated by figure 28.
The relative deviations for the data simulated with simultan-
eous excitation and ionization is represented with squares. The
data obtained with the exact same set of simulation paramet-
ers, but with separated laser pulses is shown with filled circles.
As section 6.1.2 already discussed, the resolution obtained with
delayed ionization is better, which is why the figure has two
scales for the x-axis. The scale shown at the top of the figure
shows the resolution obtained with simultaneous pulses, the
scale on the bottom with separated pulses.

The similarities in the trends in the simulated data motivate
a scaling of the relative deviations by a factor P

ref
1

P1
, where Pref

1 =

0.1Psat
1 . The rescaled data is shown in figure 29; the rescaling

makes all the simulated data fall onto a same curve.
Two things should be noted regarding this rescaling:

• It is independent of the power of the ionizing laser, prov-
ing the claim that the influence of the second laser step
is indeed completely absent from spectra obtained with
delayed ionization

• It can be experimentally determined by making determ-
ining A/FWHM by fitting the spectra, and the power by
making a saturation curve measurement.

The combination of these two remarks allows for an accurate
determination of both the size and sign of the deviation made
by choosing the simple Voigt fitting model, using only quantities
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Figure 27: Relative deviation on extracted hyperfine parameters. The
results for everal different laser power combinations and in-
put A parameters are plotted, always with the second laser
delayed by 75 ns with respect to the excitation laser. The
scale on the x axis is the fitted hyperfine splitting divided
by the fitted FWHM, a measure for the resolution of the
experiment. Compare also to figure 18 which was obtained
using the exact same simulations settings but without the
delay.

that can be experimentally determined (e.g. the power of the first
laser, the ratio Afit/FWHMfit). Making the same (or any other
obvious) rescaling case of simultaneous laser pulses is not as
successful. A more complicated approach taking the laser power
of both lasers into account would be needed.
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Figure 28: Comparison of simulated data with and without the delay.
The scale on the x-axis is the resolution of the data without
delay for easier comparison. The resolution for the data ob-
tained with the delay is a factor of two better.

The fact that the relative deviation is not always identically
zero reflects the idea that the post-excitation population has some
memory of what happened during the excitation pulse. This is
illustrated in figure 30; the shape of the population spectrum of
each of the states in the excited doublet is not symmetric during
the excitation. This is because during the excitation pulse these
two states were mixed and therefore influenced one another. The
consequences of this interaction (i.e. the asymmetry of the excit-
ation spectra) are not completely removed as the pulse dies out,
as can also be seen on figure 30.

6.2 conclusions on time-separated laser pulses

The observations in this chapter show that delaying the ioniz-
ation pulse until after the excitation has finished removes all
ionization-induced effects on the ionization spectra. Furthermore,
the quantum mechanics of pulsed excitations allows for adia-
batic population return of population. These two observations
have lead to the following two results:

• The resolution (precision) of RIS can be improved consid-
erably due to removal of power broadening resulting from
both lasers. This reduction in power broadening is a par-
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Figure 29: As figure 27, now rescaled by a factor Pref
1
P1

, where Pref
1 =

0.1Psat
1 . Note how the curves fall on top of each other.

|2〉|2〉

|1〉|1〉

During excitation After excitation

|2〉
|1〉

|0〉

Figure 30: Population of the excited states during and after the excita-
tion. On the right the levels and their labels are shown. Note
the asymmetry during the excitation and how it remains
after the excitation, though in considerably reduced.
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tial reduction for the excitation step and a full reduction
for the ionization step

• The accuracy of RIS can be improved significantly on two
separate levels. Firstly, the deviations in the fitted hyper-
fine splitting are reduced considerably. Secondly, the de-
viations that are still present can be easily parametrized
by determining the experimental resolution and the power
relative to the saturation power. This parametrization has
been verified up until saturation, which is the typical re-
gime experiments would be performed in.
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E X P E R I M E N TA L T E S T S

An experiment was proposed to test the theoretical predictions
made in chapters 5 and 6 in late January, and subsequently real-
ized in March. The goals of these tests were the following:

1. Determining saturation powers, resolution, efficiency for
both cw and pulsed excitations for alkali atoms (in this
case potassium),

2. Investigating power-related lineshape effects,

3. Testing of adiabatic population transfer mechanisms for
pulsed excitations (efficiency and resonance linewidth)

All three goals are preferably realized in a Doppler-reduced or
Doppler-free way, such that only the atom-laser interactions de-
termine the line shapes and widths. Both photon and ion de-
tection should be carried out since photon is technically easier
to realize and because it allows determination of the Doppler
broadening before attempting RIS.

This section describes the experimental setup that was con-
structed to reach these goals and discusses the results.

7.1 experimental setup

The RIS tests were performed on atomic beams of K. These
beams were produced from a potassium salt using a direct current-
heated Tantalum oven. This oven was put in a vacuum chamber
capable of reaching pressures of 9 × 10−7 mbar in absence of
oven heating. The pressure equilibrates at 3.6× 10−6 mbar with
a heating DC of 10A. At these temperatures, a fraction of the
K vapor is ionized through surface ionization. These ions are
prevented from reaching the laser-atom interaction region by ap-
plying a positive bias to a grid placed just above the source. The
neutral atoms are not affected by the potential grid and pass into
the interaction region.

The laser-atom interactions take place in a cylindrical light col-
lection region, schematically shown in figure 31. The geometry
of the system is such that the lasers make a 90 degree angle with
the atomic beam axis. This geometry differs from the CRIS geo-
metry but does not change the laser-atom interactions. A pair of
slits is used to reduce the velocity spread of the atoms along the
laser propagation axis. The light collection region reduces the
scattered light observed by the photo-multiplier tube mounted

63
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onto the vacuum chamber. Additionally, several baffles and col-
limators were installed along the path of the laser beam with the
aim of reducing the amount of scattered light that reaches the
PMT. The main sources of laser scattering are the two Quartz
windows used to let the laser enter and exit the vacuum cham-
ber. The entry window was set at the Brewster’s angle to further
reduce this scatter, and is mounted 0.5m away from the interac-
tion point. The exit window is a flat window and a significant
source of scattered laser photons. The distance from this flat win-
dow to the interaction point is 30cm.

Through the use of imaging lenses the solid angle of the PMT
is increased to ??. In addition to the PMT, an Multi Channel
Plate detector is also installed on the vacuum chamber. The dis-
tance from the interaction point to the MCP is 40cm, allowing
for time-of-flight identification and separation of the ions. To
help guide the ions across this distance, a second grid is moun-
ted in between the interaction point and the MCP and kept at a
negative voltage.

PMT

MCP

Biased Grid

Biased Grid

Laser Beams

Oven
Along Laser Direction Normal to Laser Direction

MCP

Figure 31: Schematic diagrams of the oven, interaction region and the
light collection region that surrounds it. Also shown are the
two grids and the Doppler-narrowing slits. The atom beams
are shown in a lighter shade than the ions.

Ionization is achieved using a two-step ionization scheme. The
first step relies on a cw Ti:Sa laser to provide 769nm light to per-
form resonant excitations of the electrons from the 4s1/2 ground
state to 4p1/2. Both states are hyperfine split into a doublet
which results in four transitions (labeled A,B,C and D on figure
32). The second step is a non-resonant ionization step which re-
quires 355nm photons, obtained by frequency tripling 1064 light
from a Nd:YAG laser. This laser arrangement can produce up to
300mW of 769nm light and 5mJ per pulse of 355nm. The reson-
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Figure 32: Electronic level scheme of 39K for the transition used in this
work.

ant step can be performed by continuous excitation or by chop-
ping the cw light into pulses using a Pockels cell. This optical
element uses a birefringent crystal. By applying a 3.6kV voltage
the polarization of the crystal can be rotated 90 degrees. A fast
high voltage switch therefore allows for extinction of the laser
light by three orders of magnitude or full transmission depend-
ing on the relative polarization of the crystal and the laser light.
By chopping the beam it is possible to begin testing the theoret-
ical predictions of chapter 6 without using a really pulsed laser
for step 1.

7.2 results

The discussion of the results is divided into two parts; one de-
voted to scans with a continuous excitation step, the other to
scans with a pulsed excitation step. The first part of this section
will mostly illustrate the presence of power-induced resonance
position shifts, making it related to chapter 5 while the study
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with pulsed excitations should be read in the context of chapter
6.

7.2.1 Continuous excitation

Both fluorescence detection and RIS was performed on the K
beams, allowing a side-by-side comparison. Figure 33 shows two
scans, the left one using ion detection after RIS and the right
one using photon fluorescence detection. In both cases the ex-
citation is continuous. The ionization step was pulsed. The ion
scan was recorded using 0.5mW of 769nm and 1.6mJ of 355nm,
while the photon scan was taken using 1mW in the resonant step.
These spectra clearly show the well-resolved hyperfine spectrum
associated with the Doppler-collimated atomic beam that has
passed through the slits. The four narrow peaks sit on top of a
broad structure. This broad structure is due to a considerable
residual vapor that fills the chamber and the interaction region.
This rarified gas has a large velocity spread, leading to Doppler-
broadened resonances in the hyperfine spectra. The photon spec-
tra have an additional background since the PMT also detects
scattered laser photons.
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Figure 33: Ion (left) and phton (right) spectrum of 39K taken in similar
conditions. The solid line is the best fitting curve obtained
by the procedure outlined in the main body of this text.

The solid line is the best fit obtained through a least-squares
minimization. The fitting model is the sum of several compon-
ents needed to take the observations of the previous paragraph
into account. So, the fitting function contains four narrow Voigt
profiles with the same width, but with free positions and intens-
ities. Additionally, four wider Voigt profiles are added at the
same positions as the narrow peaks, once again with free intens-
ities but the same width. These are used to fit the large, broad
distribution underneath the four narrow peaks.

A lot more statistics are collected per second for the photon
signal. One reason for this is the suboptimal ion optics present
in the ABU in its current form. The main reason however is that
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the excitation step happens continuously, while the ionization
step happens via a 20Hz repetition rate pulse that is only a few
nanoseconds long. This duty cycle loss results in lower statistics.

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

I (a.u.)

Figure 34: Saturation curve: Intensity (normalized to reference scans
taken in between every measurement) of the leftmost peak
of the hypefine spectrum of 39K as function of power dens-
ity used for the first step of the ionization process.

Figure 34 shows the saturation curve for the excitation step.
This figure demonstrates that the transition reaches saturation
at approximately 30-40mW for the narrow structures. Figure 35

shows the widths of the narrow peaks at the laser powers of fig-
ure 34. Figure 36 shows the difference in frequency of the two
transitions from the F = 1 hyperfine ground states to the two
excited states as function of the power in this excitation step.
Figure 35 illustrates how the width of the resonances increases
with the power density, as expected (compare for example to
25 at 0 ns delay). Figure 36 shows that an increase in power
density results in a shift in the peak-to-peak distance of the res-
onances. Figure 37 shows a few examples of ion scans at several
laser power densities, illustrating both the increasing widths and
splittings. The splittings increase by a factor of three when go-
ing from a few mW to 100mW, an effect far larger than what the
model developed in this thesis can account for. Further research
is needed to understand this effect.
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Figure 35: Full Width at Half Maximum of the narrow Doppler-
narrowed peaks in the ion spectra as function of the power
in the first step.
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Figure 36: Splitting of the narrow Doppler-narrowed peaks in the left
doublet of the ion spectra as function of the power in the
first step.
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Figure 37: Ionization spectra after subtraction of the Doppler-
broadened contribution of the rest gas for various Ti:SA
laser power densities. Experimental data and the best fit for
the transitions from F = 1 to the two excited states of 39K
is shown, as function of frequency. The Doppler-broadened
component is subtracted from the total ion rate.

7.2.2 Pulsed Excitation

The second stage of the experiment consisted of using a Pock-
els cell placed in the optical beam path to chop the cw light,
effectively making it into a pulsed laser. All measurements dis-
cussed in this chapter were obtained with an excitation pulse
of 100 ns FWHM, as seen by a 1 GHz sample rate photo diode.
The extinction rate of the Pockels cell is 1/500, which means
that there is still some cw laser light present in the interaction
region. To determine the influence of this remanent light, the
ionization laser was timed to 200 µs before the excitation pulse.
Figure 40 shows the resulting ionization spectrum, as well as a
spectrum obtained by temporally overlapping the excitation and
ionization pulse. The remanent light is still sufficiently intense to
excite a small fraction of the population to the ground state, but
the contribution of the pulsed excitation is dominant.

The passage through the Pockels cell and the analysing optics
reduced the power of the laser pulse by a factor of 3. Figure 39

shows the saturation curve for the available power densities. The
intensities have been normalized to reference measurements at a
chopped 18 mW cw beam. For reference, a zoom-in of the satur-
ation curve for a cw excitation step is also repeated from figure
34, still normalized to cw reference scans at 50 mW. The data re-
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Figure 38: Comparison of a scan with a cw first step (red) and a scan
with a pulsed excitation step (blue). The excitation power
is 40mW, the ionization pulse has 1.6mJ per pulse. The two
scans were taken at different moments in during the experi-
mental run; the pressure was lower for the pulsed excitation
measurements. This explains the reduction of the Doppler-
broadened structure underneath the narrow peaks.
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Figure 39: Left: Saturation curve for pulsed excitation and delayed ion-
ization. The intensity in the two narrow peaks normalized
to reference scans at 18 mW taken in between scans. Right:
saturation curve for a cw excitation step, normalized to the
saturation intensity.

quired for the chopped saturation curve was made by delaying
the 1064 nm light to 100 ns after the end of the excitation pulse.
The powers on the x-axis of this chopped saturation curve were
measured by sending the laser beam through the pockels cell
while it is not chopping (i.e. by constantly applying the maximal
voltage).

Figure 38 compares two ionization spectra of the full hyper-
fine spectrum, one obtained with a cw first step, the other with
the first step chopped and the second laser firing after the excit-
ation pulse. The laser setup was the same for both scans, with
50 mW power in the excitation step. However, the cw scan was
taken in a higher-pressure environment. This explains the reduc-
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Simultaneous Lasers
Delayed Excitation (200 µs)

Figure 40: Left: Ionization spectra obtained by ionizing during the ex-
citation (blue, labeled ‘Simultaneous Lasers’) and ionizing
before the excitation (red, labeled ‘Reverse Timing’).

Simultaneous Lasers
Delayed Ionization

Figure 41: Ionization spectrum of just the A and B transitions, with
simultaneous laser pulses (blue) and with the ionization
pulse delayed until after the excitation pulse (red).

tion of the Doppler-broadened structure underneath the narrow
peaks. Chopping the first step results in a reduction of the reson-
ance width from 100± 11MHz 29± 3MHz. The position of the
resonances are also no longer shifted, which results in a recovery
the normal 39K hyperfine splittings.
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The delay between both laser pulses can easily be adjusted by
changing the trigger to the Pockels cell. Figure 41 compares two
ionization spectra, one obtained with simultaneous laser pulses
(in red), the other one (in blue) with the ionization pulse delayed
to 400ns after the chopping trigger (i.e. to just after the extinction
of the excitation pulse which ends at 375 ns). Both spectra were
obtained by chopping 18 mW of 769nm light into pulses. Only
the A-B doublet is shown. Note how the intensity of the delayed
spectrum is reduced due to spontaneous decay. This intensity
loss could be mitigated by choosing a transition to an excited
state with a longer liftetime (the lifetime of the excited 4p1/2-
state is 26.3 ns [46]). The width of the resonances is also smaller
for the delayed pulses; it drops from 39(3) MHz to 26(2) MHz.
How both the intensity and the width of the resonances depend
on power and on the delay between both pulses is investigated
next.

By changing the timing of the trigger to the pockels cell, the
arrival time of the ionization pulse pulses can be delayed relat-
ive to the excitation pulse. The top plot of figure 42 shows that
the width of the ionization spectra is reduced if the ionization
pulse is delayed after the excitation pulse, as was predicted in
chapter 6. When the delay is larger than 375ns the width of the
resonances drops down from a weighted average of 38± 1MHz
to a weighted average of 25± 1MHz. This last value matches the
best resolution obtained using this atomic beam unit.

The bottom plot of figure 42 shows the intensity of the reson-
ances as function of the delay. Recall that the excitation pulse
starts at 100ns and ends at 375ns. The right tail of the intens-
ity curve shows how the population of the excited state through
spontaneous decay, with a decay rate of 26.3 ns. Future work
could investigate transitions with a longer spontaneous decay
half-life. An important point of investigation is whether or not
chopped cw lasers could supply the laser powers needed to sat-
urate the excitation of such a weak transition. The experimental
setup used for these tests can still be improved on this point; re-
covering the power losses at the entry of the Pockels cell could
represent a first step towards the study of weaker transitions.
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Figure 42: Top: Width of the resonances as function of the delay
between the laser pulses. The power density is 18 mW in
all cases. Middle: drawing of the laser pulses for a delay of
375ns. Bottom: Intensity as function of the delay between
the two laser pulses. For both graphs the excitation laser
power was 18 mW.
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C O N C L U S I O N

This thesis aimed to develop a framework that could handle the
coherent nature of the interaction of laser photons with atomic
electrons for a two-step resonance ionization process. This frame-
work was developed by deriving equations of motion of the
coupled atom-photon system. The equations that emerged from
these calculations served as a starting point for the study of two
topics.

The first of these two topics can be classified under the um-
brella of ‘accuracy in resonant ionization spectroscopy’. The in-
teractions of the electrons with the photon field of the excitation
laser and the bound-bound couplings resulting from the ioniza-
tion laser proved capable of influencing the hyperfine splitting
that is extracted from poorly resolved ionization spectra by ap-
plying the standard fitting routines in laser spectroscopy. These
systematic deviations can be up to several percents; the influ-
ence of the ionization-induced bound-bound interactions on the
hyperfine splitting of the excited states in particular can deviate
by several tens of percents. These theoretical findings were com-
pared to published in gas-cell laser spectroscopic data on neut-
ron deficient Cu isotopes. Simulations tailored specifically to this
dataset proved capable of explaining the discrepancy between
the hyperfine splittings extracted from the in-gas cell data and
high-resolution fluorescence data.

The second topic dealt with the issue of ‘precision in resonant
ionization spectroscopy’ and focused in particular on a theoret-
ical study of power broadening due to pulsed laser excitations
and ionizations. The key concept required to understand these
differences proved to be the idea of adiabatic population trans-
fer. Application of the adiabatic theorem yielded estimates for
how the linewidth for post-excitation ionization spectra varies
with the laser power, revealing that power broadening for pulsed
lasers differs significantly from power broadening due to con-
tinuous wave lasers. In particular, for Gaussian pulse shapes, a
logarithmic power dependence was established. This and other
results provide compelling arguments to further study the role
of the delay between the excitation and ionization laser; if the
ionization laser is delayed until after the excitation laser pulse
has passed, a substantial increase in resolution could be obtained.
A first experimental step was already made in this regard, with
results that were shown in this work. These results confirm the
reduction of power broadening by delaying the ionization step.
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These two topics are not independent of one another. This
thesis not only suggests that the precision of RIS could be im-
proved by ionizing only after the excitation step, the ionization-
related changes in the fitted hyperfine splitting should also be
removed completely by doing so. This and other predictions
made in this thesis will be tested during the coming summer.
This data will provide the ultimate test for the model as it is
now. Regardless of the outcome of these tests, there is certainly
one aspect lacking as of now: a good description of spontaneous
decay. Spontaneous decay is not only required to explain optical
pumping phenomena that determine relative peak intensities of
hyperfine structure spectra but could also be at the root of the
very large increase in splitting observed in figure 36.



A
I L L U S T R AT I O N O F A N A LY T I C A L E S T I M AT E S
O F T H E A D I A B AT I C R E G I M E

Consider a a two-level system irradiated by a photon field of fre-
quency ωa in the adiabatic basis. Chapter 6 argued that applic-
ation of the adiabatic theorem allows determination of the max-
imal amount of power broadening a resonance can have after the
excitation pulse. Equations 96, 97 and 99 provide expressions for
this maximal broadening in terms of the pulse fall time and the
power density of the excitation laser. This appendix graphically
illustrates the calculations in [47]. These derivations start from
equation 32:

iȦ(t) =

(
λ− −iθ̇

iθ̇ λ+

)
A(t) (32)

Recall the definition of λ± and θ:

λ± =
1

2

(
∆01 ±

√
4g(t)2 +∆201

)
, (100)

θ =
1

2
arctan

2g(t)

∆01
, (101)

which means that

θ̇ =
∆01ġ(t)

∆201 + 4g(t)
2

. (102)

Of particular interest are functions g(t) that are smooth bell-
shaped functions of time.

If the coupling of the adiabatic states is very weak the pop-
ulation will stay in its initial adiabatic state throughout the ex-
citation pulse. Note that this does not mean the system stays in
either of the bare states; it rather makes an excursion to the other
bare state, only to return to the initial state asymptotically (since
them the bare states coincide with the adiabatic states).

If on the other hand the adiabatic coupling is strong, the pop-
ulation will not stay in its initial adiabatic state. The final state of
the system will therefore always have a component along the ex-
cited state vector. This means that population will be transferred
to the excited state |1〉. The maximal width ∆max of the post-
excitation excited state population is determined by the diabatic
region and is therefore constrained by the adiabatic condition

λ+ − λ− �
∣∣θ̇∣∣ , (95)
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which implies√
∆201 + 4g(t)�

∣∣∣∣ ∆01ġ(t)

∆201 + 4g(t)
2

∣∣∣∣ (103)

Bringing all the terms on one side of inequality 103 reveals a
numerically testable criterium for nonadiabatic evolution:(

∆201 + 4g(t)
2
)3/2

∆01ġ(t)
� 1. (104)

Figure 43 illustrates expression 104 as a function of the detuning
and time for a Gaussian pulse. The laser fires at t = 0 and has
a FWHM of T . Black areas are areas in which condition 104 is
violated and the evolution of the system is diabatic; white areas
are areas of adiabatic evolution. Note that there are always two

Figure 43: Example of the region in the detuning-time plane where adi-
abticity is violated (black) for a Lorentzian (left) and Gaus-
sian (right) pulse. The range of detunings for which the evol-
ution is non-adiabatic determines the maximal linewidth of
the excited state population.

diabatic regions. This is due to θ̇ having two maxima in time at
times ±t0; around these times, condition 95 is hardest to satisfy.
An estimate for the maximal non-adiabatic detuning region can
be obtained by finding where the black areas of figure 43 are
the widest along the detuning axis. Note also how the diabatic
region extends much further along the time-axis for the Lorent-
zian pulse shape. This is due to the much slower power drop in
the tails of a Lorentzian pulse.

Figure 44 shows the diabatic regions in the detuning-time
plane for several, linearly increasing powers and a Lorentzian
pulse shape. The detuning axis is scales inversely with the laser
power; the time axis scales linearly with power. This scaling was
done with the calculations of [47] in mind; if they are correct,
all the diabatic regions should look the same since t0 ∼ g0 and
∆max ∼ 1/g0. This is indeed what figure 44 shows. Figure 45

presents a different view on the same plots by showing the con-
tour plots of the diabatic regions in the detuning-time plane all
on one plot, clearly illustrating that t0 ∼ g0 and ∆max ∼ 1/g0.
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The implications are twofold; the post-excitation ionization
linewidth scales inversely with the laserpower and the times
at which the evolution is diabatic is linearly dependent on the
power. This second point confirms the intuitive arguments for
power narrowing presented in [47].

Figure 47 repeats the calculations that led to figure 44, but this
time with a Gaussian pulse shape and exponentially increasing
powers (gi = eigref). The theory in [47] predicts the linewidth
has a logarithmic power dependence, so the detuning axis is
scaled linearly with i. The similarity in maximal widths of the
adiabatic regions shown in 47 therefore confirms the logarithmic
power broadening. Figure 46 shows the contour lines of the dia-
batic regions in the detuning-time plane all plotted on one fig-
ure. The widths of the diabatic regions increase linearly with the
exponent i, once again confirming the logarithmic power broad-
ening.
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Figure 45: Contour lines of the diabatic regions in the detuning-time
plane as function of linearly increasing power for a Lorent-
zian excitation pulse.

Figure 46: Contour lines of the diabatic regions in the detuning-time
plane as function of exponentially increasing power for a
Lorentzian excitation pulse.
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Listing 2: Simulation input file used for the tests in chapter 5

Nuclear Spin

0.5

Electronic Spin

0

1

Magnetic Dipole Constants in Mhz

0

150

Electric Quadrupole Constant

0

0

Wavelength of the transitions in nm

422

1064.0

Photo-inisation cross section in 10^-18 cm^2

3

Fano Factor

0

Interaction area in cm^2 (=pi * beam radius^2)

0.3

Oscillator strength

0.286

Duration of the laser pulse in nanosec

25

25

Separation of the laser pulse in nanosec

0

Intensity of the lasers in mJ per pulse

4e-4

0.5

Scanning range of the laser frequency in Ghz

1.4 �

83



simulation input files 84

Listing 3: Simulation input file used for simulating the 59Cu data with
option 1

Nuclear Spin

1.5

Electronic Spin

0.5

0.5

Magnetic Dipole Constants in Mhz

5033

2064

Electric Quadrupole Constant

0

0

Wavelength of the transitions in nm

244

411

Photo-ionisation cross section in 10^-18 cm^2

3

Fano Factor

0

Interaction area in cm^2 (=pi * beam radius^2)

0.3

Oscillator strength

0.0018

Duration of the laser pulse in nanosec

15

15

Separation of the laser pulse in nanosec

0

Intensity of the lasers in mJ per pulse

0.001

1.5

Scanning range of the laser frequency in Ghz

50 �
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Listing 4: Simulation input file used for simulating the 59Cu data with
option 2

Nuclear Spin

1.5

Electronic Spin

0.5

0.5

Magnetic Dipole Constants in Mhz

2000

820

Electric Quadrupole Constant

0

0

Wavelength of the transitions in nm

244

411

Photo-ionisation cross section in 10^-18 cm^2

3

Fano Factor

0

Interaction area in cm^2 (=pi * beam radius^2)

0.3

Oscillator strength

0.0018

Duration of the laser pulse in nanosec

15

15

Separation of the laser pulse in nanosec

0

Intensity of the lasers in mJ per pulse

0.00009

1

Scanning range of the laser frequency in Ghz

25 �
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