The role of initiators in epoxide-based thin-film composite membranes

Irian Baert Rhea Verbeke Daan Van Havere
Persbericht

Het duurzame membraan van de toekomst

image 277

Het duurzame membraan van de toekomst

Beeld je in dat we binnenkort in staat zijn om niet alleen zeewater te ontzouten voor drinkwaterproductie, maar dat het ook mogelijk wordt om broeikasgassen te filteren uit de atmosfeer, en dat alles op een duurzame manier. Voor heel wat mensen klinken deze uitspraken als te mooi om waar te zijn, maar niet als je het vraagt aan Irian Baert (KU Leuven). Tijdens zijn thesis, binnen het veld van membraantechnologie, onderzocht hij namelijk een recent geïntroduceerde innovatieve chemie om net dit type membranen waar te maken.

Waarom nood aan een nieuw type membranen?

Wanneer er vuil of zout water wordt gefilterd, wordt er na een tijd een soort koek opgebouwd op het membraanoppervlak. Deze koek zorgt er voor dat minder water wordt doorgelaten, gelijkaardig aan wat er gebeurt als je koffie filtert. Aangezien de koek soms heel hard kan zijn en niet zomaar mechanisch verwijderd kan worden, moeten de membranen om de zoveel tijd gekuist worden met agressieve schoonmaakproducten zoals Javel. De conventionele membranen kunnen daar niet goed tegen en worden erdoor beschadigd. Ze kunnen dus eigenlijk niet grondig gereinigd worden waardoor ze na een tijd nog maar weinig water doorlaten.

Epoxides ‘to the rescue’

Vijf jaar geleden introduceerden Bio-ingenieurs aan de KU Leuven echter een nieuw type membraan voor gas- en vloeistofscheidingen dat op epoxide chemie gebaseerd is en dus enorm stabiel is. Het woord ‘epoxide’ of ‘epoxy’ klinkt je misschien bekend in de oren aangezien deze stoffen gebruikt worden in onder andere stevige lijmen en coatings. Het brede toepassingsgebied ervan is te danken aan hun eigenschappen. Ze zijn namelijk mechanisch, thermisch en chemisch zeer robuust. Aangezien dit ook interessante membraaneigenschappen zijn, gebruikten de Bio-ingenieurs deze epoxides voor hun nieuw type membranen die wel tegen de agressieve schoonmaakproducten bestendig zijn.

Time is money!

De epoxide membranen worden gemaakt door middel van twee reactiestappen. Eerst worden verschillende epoxide moleculen aan elkaar verbonden tot langere ‘polymeerketens’, die een vrij los netwerk vormen. Dit netwerk wordt daarna verdicht door de ketens aan elkaar te knopen. In die laatste stap worden er ook positieve ladingen ingebouwd, wat voordelig is om zouten tegen te houden. Het proces om dit polymeernetwerk te vormen, wordt in gang gezet door een molecule die de reactie start (i.e., de initiator). De reactie met de initiator is de stap die het meeste tijd in beslag neemt. Een belangrijk gegeven om de sprong te maken van productie op laboschaal naar industriële schaal is dat de membranen snel genoeg gemaakt moeten kunnen worden. Tot op heden duurt het maken van de epoxide membranen echter te lang voor een economisch haalbare opschaling te kunnen realiseren. Omwille van deze reden onderzocht Irian Baert verschillende strategisch uitgekozen initiatoren om na te gaan hoe ze precies reageren in het systeem en of ze een snellere membraanproductie toelaten. Verder kan een diepere kennis over het chemisch reactiemechanisme van de bouwstenen van dit membraan een mogelijkheid bieden om te stoppen met het proberen optimaliseren van de membranen zonder te weten wat er werkelijk gebeurt. Er kan namelijk overgestapt worden op een meer tijds- en grondstofefficiënte manier van optimalisatie.

Nieuwe inzichten in de productie van duurzame membranen

Door middel van verschillende karakterisatietechnieken was het mogelijk om nieuwe kennis te vergaren over het systeem. Zo werd bijvoorbeeld electronenmicroscopie toegepast om het oppervlak van het membraan op zeer sterke vergroting te bestuderen. Daarnaast gaven infrarood analyses informatie over de chemische samenstelling van de membranen.

Dankzij deze informatie werd ontdekt dat de laatste stap in het productieproces een grotere invloed heeft op het vermogen om zouten tegen te houden dan eerdere stappen omdat de initiator daar makkelijker met de reactieve groepen in de omgeving kan reageren. De efficiëntie waarop de initiator de knopen kan leggen in het polymeernetwerk in functie van de tijd werd ook duidelijker: in het begin gaat dit makkelijker dan later, wanneer steeds minder reactieve groepen overblijven. Tot slot werd ontdekt dat het systeem nood heeft aan een voldoende reactieve en grote initiator die langs twee kanten kan reageren.

Een blik op de toekomst

Dankzij de nieuwe inzichten die Irian vergaarde in zijn thesis kunnen nieuwe methodes ontwikkeld worden om de membranen op een minder tijdsintensieve manier te maken en de opschaling ervan te vergemakkelijken. Zo kan er gekeken worden naar het productieproces met een combinatie van korte en lange stappen en ook naar processen op verhoogde temperatuur of waar katalysatoren worden toegevoegd. Via Irian zijn werk zijn we een stapje dichter bij een meer uitgebreide kennis over deze nieuwe chemie voor de productie van duurzame, robuuste membranen.

Bibliografie

1 University of Wollongong (2019). Global problems. Retrieved October 18, 2022, from https://www.futurelearn.com/info/blog 2 U.S. Geological Survey. (2019). How Much Water is There on Earth? Retrieved December 31, 2022, from https://www.usgs.gov/special-topics/water-science-school/science/how-mu… 3 Abengoa (2015). A short history of desalination. Retrieved October 18, 2022, from http://www.theenergyofchange.com/short-history-of-desalination 4 Victoria State Government (2019). Desalination history. Retrieved October 18, 2022, from https://www.water.vic.gov.au/water-grid-and-markets/desalination/desali… 5 Do Thi, H. T., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water, 13(21), 21. https://doi.org/10.3390/w13213023 6 Mulder, M. Basic principles of membrane technology. (Kluwer Academic, 1996). 7 Younas, M. and Rezakazemi, M. (2022). Introduction to Membrane Technology. Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, First Edition, 16. 8 Burganos, V. N. (1999). Membranes and Membrane Processes. MRS Bulletin, 24(3), 19– 22. https://doi.org/10.1557/S0883769400051861 9 Hunger, K., Schmeling, N., Jeazet, H. B. T., Janiak, C., Staudt, C. and Kleinermanns, K. (2012). Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation. Membranes, 727-763. 10 Toh, Y. H. S. (2008). MOLECULAR SEPARATIONS WITH ORGANIC SOLVENT NANOFILTRATION. 232. 11 Fernández-Barquín, A., Casado-Coterillo, C., & Irabien, Á. (2017). Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Separation and Purification Technology, 188, 197–205. https://doi.org/10.1016/j.seppur.2017.07.029 12 Khan, A. L., Basu, S., Cano-Odena, A., & Vankelecom, I. F. J. (2010). Novel high throughput equipment for membrane-based gas separations. Journal of Membrane Science, 354(1–2), 32–39. https://doi.org/10.1016/j.memsci.2010.02.069 82 13 Jansen, J. C. (2016). Ideal Gas Selectivity. In E. Drioli & L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1–1). Springer. https://doi.org/10.1007/978-3-642-40872-4_301-1 14 He, Z., & Wang, K. (2018). The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes. IOP Conference Series: Materials Science and Engineering, 323, 012002. https://doi.org/10.1088/1757-899X/323/1/012002 15 Malakhov, A.O.; Volkov, V.V. (2021).Mixed-Gas Selectivity Based on Pure Gas Permeation Measurements: An Approximate Model. Membranes 2021, 11, 833. https://doi.org/ 10.3390/membranes11110833 16 Matteucci, S., Yampolskii, Y., Freeman, B. D., & Pinnau, I. (2006). Transport of Gases and Vapors in Glassy and Rubbery Polymers. In Y. Yampolskii, I. Pinnau, & B. Freeman (Eds.), Materials Science of Membranes for Gas and Vapor Separation (pp. 1–47). John Wiley & Sons, Ltd. https://doi.org/10.1002/047002903X.ch1 17 Singh, R. (2005). Chapter 1—Introduction to membrane technology. In R. Singh (Ed.), Hybrid Membrane Systems for Water Purification (pp. 1–56). Elsevier Science. https://doi.org/10.1016/B978-185617442-8/50002-6 18 Drioli E, Giorno L (eds) (2010). Comprehensive membrane science and engineering. Elsevier Ltd. Oxford, UK ISBN: 978-0-08-093250-7 19 Strathmann H, Giorno L, Drioli E (2006). An introduction to membrane science and technology. CNR – Servizio Pubblicazioni e Informazioni Scientifiche, Rome, Italy 20 Drioli, E., Quist-Jensen, C. A., & Giorno, L. (2016). Molecular Weight Cut-off. In E. Drioli & L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1326–1327). Springer. https://doi.org/10.1007/978-3-662-44324-8_2216 21 Lee, A., W. Elam, J., & B. Darling, S. (2016). Membrane materials for water purification: Design, development, and application. Environmental Science: Water Research & Technology, 2(1), 17–42. https://doi.org/10.1039/C5EW00159E 22 Baker, R.W. (2004). Membrane technology and applications (2nd edition). John Wiley & Sons. 23 Purkait, M.K. and Singh, R. (2018). Membrane technology in separation science. Taylor & Francis Group. 24 Fundamentals of Membrane Transport Phenomena. (2017). In T. Uragami, Science and Technology of Separation Membranes (pp. 147–180). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118932551.ch6 25 Ismail, A. F., Kusworo, T. D., Mustafa, A., & Hasbullah, H. (2005). Understanding the Solution-Diffusion Mechanism in Gas Separation Membrane for Engineering Students. Proceedings of the 2005 Regional Conference on Engineering Education. 26 Wijmans, J.G. & Baker, R.W. (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107, 1-21. https://doi.org/10.1016/0376-7388(95)00102-I. 83 27 Hendrix, K., & Vankelecom, I. F. J. (2013). Solvent-Resistant Nanofiltration Membranes. In Encyclopedia of Membrane Science and Technology (pp. 1–33). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118522318.emst120 28 Wijmans, J. G. H., & Baker, R. W. (2006). The Solution-Diffusion Model: A Unified Approach to Membrane Permeation. Materials Science of Membranes for Gas and Vapor Separation, 159–189. 29 Lin, H., & Freeman, B. D. (2005). Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure, 739(1–3), 57–74. https://doi.org/10.1016/j.molstruc.2004.07.045 30 Abdullah, N., Rahman, M.A., Othman, M.H.D., Jafaar, J. and Ismail, A.F. (2018). Chapter 2 - Membranes and Membrane Processes:Fundamentals. . In A. Basile, S. Mozia, & R. Molinari (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 45–70). Elsevier. https://doi.org/10.1016/B978-0-12-813549-5.00001-3 31 Cherif, H., & Belhadj, J. (2018). Chapter 15—Environmental Life Cycle Analysis of Water Desalination Processes. In V. G. Gude (Ed.), Sustainable Desalination Handbook (pp. 527– 559). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809240-8.00015-0 32 Lonsdale, H. K. (1982). The growth of membrane technology. Journal of Membrane Science, 10(2), 81–181. https://doi.org/10.1016/S0376-7388(00)81408-8 33 Vankelecom, I. F. J. (2016). Membrane Technology. 34 Ismail, A.F. an Matsuura, T., (2022). Membrane separation processes. Amsterdam, Netherlands: Elsevlier 35 Ritt, C. L., Stassin, T., Davenport, D. M., DuChanois, R. M., Nulens, I., Yang, Z., Ben-Zvi, A., Segev-Mark, N., Elimelech, M., Tang, C. Y., Ramon, G. Z., Vankelecom, I. F. J., & Verbeke, R. (2022). The open membrane database: Synthesis–structure–performance relationships of reverse osmosis membranes. Journal of Membrane Science, 641, 119927. https://doi.org/10.1016/j.memsci.2021.119927 36 Nagy, E. (2019). Chapter 21—Pressure-Retarded Osmosis (PRO) Process. In E. Nagy (Ed.), Basic Equations of Mass Transport Through a Membrane Layer (Second Edition) (pp. 505–531). Elsevier. https://doi.org/10.1016/B978-0-12-813722-2.00021-2 37 World sea temperatures (2022). Mediterranean temperature. Retrieved May 26, 2022, from https://www.seatemperature.org/mediterranean-sea 38 NASA Earth Observatory (2012). A Measure of Salt. [Text article]. https://earthobservatory.nasa.gov/images/78250/a-measure-of-salt 39 Wang, L., Cao, T., Dykstra, J. E., Porada, S., Biesheuvel, P. M., & Elimelech, M. (2021). Salt and Water Transport in Reverse Osmosis Membranes: Beyond the Solution-Diffusion Model. Environmental Science & Technology, 55(24), 16665–16675. https://doi.org/10.1021/acs.est.1c05649 84 40 Atkins, P. W., & De Paula, J. (2006). Atkins’ Physical chemistry. W.H. Freeman. 41 Espanani, R., Miller, A., Busick, A., Hendry, D., & Jacoby, W. (2016). Separation of N2/CO2 mixture using a continuous high-pressure density-driven separator. Journal of CO2 Utilization, 14, 67–75. https://doi.org/10.1016/j.jcou.2016.02.012 42 Fernández-Barquín, A., Casado-Coterillo, C., & Irabien, Á. (2017). Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Separation and Purification Technology, 188, 197–205. https://doi.org/10.1016/j.seppur.2017.07.029 43 Caldwell, S. J., Al-Duri, B., Sun, N., Sun, C., Snape, C. E., Li, K., & Wood, J. (2015). Carbon Dioxide Separation from Nitrogen/Hydrogen Mixtures over Activated Carbon Beads: Adsorption Isotherms and Breakthrough Studies. Energy & Fuels, 29(6), 3796–3807. https://doi.org/10.1021/acs.energyfuels.5b00164 44 Janusz-Cygan, A., Jaschik, J., Wojdyła, A., & Tańczyk, M. (2020). The Separative Performance of Modules with Polymeric Membranes for a Hybrid Adsorptive/Membrane Process of CO2 Capture from Flue Gas. Membranes, 10(11), 309. https://doi.org/10.3390/membranes10110309 45 Pal, P. (2015). Chapter 5—Arsenic Removal by Membrane Distillation. In P. Pal (Ed.), Groundwater Arsenic Remediation (pp. 179–270). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-801281-9.00005-9 46 Leam, J. J., Bilad, M. R., Wibisono, Y., Hakim Wirzal, M. D., & Ahmed, I. (2020). Chapter 7—Membrane Technology for Microalgae Harvesting. In A. Yousuf (Ed.), Microalgae Cultivation for Biofuels Production (pp. 97–110). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00007-2 47 Du, X., Shi, Y., Jegatheesan, V., & Haq, I. U. (2020). A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes, 10(2), 24. https://doi.org/10.3390/membranes10020024 48 Arar, O., Ipek, I., & Sarp, S. (2019). Chapter 11—Synthesis of nanomaterial-incorporated pressure retarded osmosis membrane for energy generation. In W.-J. Lau, A. F. Ismail, A. Isloor, & A. Al-Ahmed (Eds.), Advanced Nanomaterials for Membrane Synthesis and its Applications (pp. 253–270). Elsevier. https://doi.org/10.1016/B978-0-12-814503-6.00011-2 49 Membrane solutions. (n.d.) Four types of Membrane Fouling—Membrane Solutions. Retrieved August 13, 2022, from https://www.membrane-solutions.com/News_1224.htm 50 Luis, P. (2018). Chapter 1—Introduction. In P. Luis (Ed.), Fundamental Modelling of Membrane Systems (pp. 1–23). Elsevier. https://doi.org/10.1016/B978-0-12-813483-2.00001- 0 51 Nicolaisen, B. (2020, June). Membranes: Fouling & Cleaning. Water & Wastes Digest. https://www.wwdmag.com/water-filtration/article/10917681/membranes-foul… 85 52 ScienceDirect Topics. (n.d.). Membrane Fouling—An overview. Retrieved August 13, 2022, from https://www.sciencedirect.com/topics/engineering/membrane-fouling 53 Xu, R., Wang, B., & Cai, Y. (2022). Preparation and structures of PEBA gas separation membrane modified by fumed silica for oil vapor separation. Scientific Reports, 12(1), 1. https://doi.org/10.1038/s41598-022-05064-7 54 Alsayed, A. F. M., & Ashraf, M. A. (2021). 2—Modified nanofiltration membrane treatment of saline water. In P. Samui, H. Bonakdari, & R. Deo (Eds.), Water Engineering Modeling and Mathematic Tools (pp. 25–44). Elsevier. https://doi.org/10.1016/B978-0-12-820644-7.00005- 0 55 Qun, S. M. (2021). Interfacial Polymerization Techniques for TFC/TFN. Retrieved August 14, 2022, from https://encyclopedia.pub/entry/7795 56 Peng, L. E., Yang, Z., Long, L., Zhou, S., Guo, H., & Tang, C. Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. Journal of Membrane Science, 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871 57 Lau, W.-J., Lai, G.-S., Li, J., Gray, S., Hu, Y., Misdan, N., Goh, P.-S., Matsuura, T., Azelee, I. W., & Ismail, A. F. (2019). Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. Journal of Industrial and Engineering Chemistry, 77, 25–59. https://doi.org/10.1016/j.jiec.2019.05.010 58 Al Mayyahi, A. (2018). Important Approaches to Enhance Reverse Osmosis (RO) Thin Film Composite (TFC) Membranes Performance. Membranes, 8(3), 68. https://doi.org/10.3390/membranes8030068 59 Purkait, M. K., Sinha, M. K., Mondal, P., & Singh, R. (2018). Chapter 1—Introduction to Membranes. In M. K. Purkait, M. K. Sinha, P. Mondal, & R. Singh (Eds.), Interface Science and Technology (Vol. 25, pp. 1–37). Elsevier. https://doi.org/10.1016/B978-0-12-813961- 5.00001-2 60 Hołda, A. K., & Vankelecom, I. F. J. (2015). Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science, 132(27). https://doi.org/10.1002/app.42130 61 Garcia, J. U., Iwama, T., Chan, E. Y., Tree, D. R., Delaney, K. T., & Fredrickson, G. H. (2020). Mechanisms of Asymmetric Membrane Formation in Nonsolvent-Induced Phase Separation. ACS Macro Letters, 9(11), 1617–1624. https://doi.org/10.1021/acsmacrolett.0c00609 86 62 S., N., Ahamed, D., & Joseph, S. (2020). Thermodynamic analysis of phase diagram of H2O-DMF-PCL system: Investigation on the influence of inorganic additives TiO2/MMT. Journal of Materials Science, 55. https://doi.org/10.1007/s10853-020-04386-z 63 Luo, T., Abdu, S., & Wessling, M. (2018). Selectivity of Ion Exchange Membranes: A Review. Journal of Membrane Science, 555. https://doi.org/10.1016/j.memsci.2018.03.051 64 Bai, H., Zhou, Y., Zhang, L. (2015). Morphology and Mechanical Properties of a New Nanocrystalline Cellulose/Polysulfone Composite Membrane. Adv. Polym. Technol., 34, 21471. https://doi.org/10.1002/adv.21471 65 Guillen, G. R., Pan, Y., Li, M., & Hoek, E. M. V. (2011). Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research, 50(7), 3798–3817. https://doi.org/10.1021/ie101928r 66 Xia, L., Vemuri, B., Saptoka, S., Shrestha, N., Chilkoor, G., Kilduff, J., & Gadhamshetty, V. (2019). Chapter 1.8—Antifouling Membranes for Bioelectrochemistry Applications. In S. V. Mohan, S. Varjani, & A. Pandey (Eds.), Microbial Electrochemical Technology (pp. 195–224). Elsevier. https://doi.org/10.1016/B978-0-444-64052-9.00008-X 67 Purkait, M. K., Sinha, M. K., Mondal, P., & Singh, R. (2018). Chapter 1—Introduction to Membranes. In M. K. Purkait, M. K. Sinha, P. Mondal, & R. Singh (Eds.), Interface Science and Technology (Vol. 25, pp. 1–37). Elsevier. https://doi.org/10.1016/B978-0-12-813961- 5.00001-2 68 Zhang, F., Fan, J., & Wang, S. (2020). Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie International Edition, 59(49), 21840–21856. https://doi.org/10.1002/anie.201916473 69 Jaydevsinh, M. G. and Rikarani R. C. (2019). Introduction to Nanostructured and Nanoenhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification—ScienceDirect. (n.d.). Retrieved May 4, 2022, from https://www.sciencedirect.com/science/article/pii/B9780128139264000380 70 Li, L.-Q., Zhan, Z.-M., Huang, B.-Q., Xue, S.-M., Ji, C.-H., Wang, R.-Z., Tang, Y.-J., & Xu, Z.-L. (2020). RO membrane fabricated via a facile modified heat-treating strategy for highflux desalination. Journal of Membrane Science, 614, 118498. https://doi.org/10.1016/j.memsci.2020.118498 71 Li, J., Wei, M., & Wang, Y. (2017). Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 25(11), 1676–1684. https://doi.org/10.1016/j.cjche.2017.05.006 72 W.-C. Chao, Y.-H. Huang, W.-S. Hung, Q. An, C.-C. Hu, K.-R. Lee, J.-Y. Lai. (2012). Effect of the surface property of poly(tetrafluoroethylene) support on the mechanism of polyamide active layer formation by interfacial polymerization. Soft Matter, 8 (34) , pp. 8998-9004 87 73 Pacheco, F.A.; Pinnau, I.; Reinhard, M.; Leckie, J.O. (2010). Characterization of isolated polyamide thin films of ro and nf membranes using novel tem techniques. J. Membr. Sci., 358, 51–59 74 Polisetti, V., Vyas, B., Singh, P., & Ray, P. (2014). Limiting thickness of polyamide– polysulfone thin-film-composite nanofiltration membrane. Desalination, 346, 19–29. https://doi.org/10.1016/j.desal.2014.05.007 75 Guan, K., Sasaki, Y., Jia, Y., Gonzales, R. R., Zhang, P., Lin, Y., Li, Z., & Matsuyama, H. (2021). Interfacial polymerization of thin film selective membrane layers: Effect of polyketone substrates. Journal of Membrane Science, 640, 119801. https://doi.org/10.1016/j.memsci.2021.119801 76 Elimelech, M., Xiaohua Zhu, Childress, A. E., & Seungkwan Hong. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127(1), 101–109. https://doi.org/10.1016/S0376-7388(96)00351-1 77 Breite, D., Went, M., Prager, A., Kühnert, M., & Schulze, A. (2020). Reduction of Biofouling of a Microfiltration Membrane Using Amide Functionalities—Hydrophilization without Changes in Morphology. Polymers, 12, 1379. https://doi.org/10.3390/polym12061379 78 Arts, W. (2018). Chemically Stable Poly(epoxyether) Thin-Film Composite Membranes. [Masterthesis, KULeuven]. 79 Verbeke, R.; Arts, W.; Dom, E.; Dickmann, M.; Egger, W.; Koeckelberghs, G.; Szymczyk, A.; Vankelecom, I. F. J. (2019). Transferring Bulk Chemistry to Interfacial Synthesis of TFCMembranes to Create Chemically Robust Poly(Epoxyether) Films. J. Memb. Sci. 80 Bruice, P. Y. (2016). Organic Chemistry. Eighth edition. Upper Saddle River, NJ: Pearson Education. 81 Burwell, R. L. (1954). The Cleavage of Ethers. Chemical Reviews, 54(4), 615–685. https://doi.org/10.1021/cr60170a003 82 Ouellette, R. J., & Rawn, J. D. (2014). 16—Ethers and Epoxides. In R. J. Ouellette & J. D. Rawn (Eds.), Organic Chemistry (pp. 535–565). Elsevier. https://doi.org/10.1016/B978-0-12- 800780-8.00016-4 83Pure Aqua. Inc. (n.d.). Membrane Cleaning Systems CIP. Retrieved November 20, 2022, from https://pureaqua.com/membrane-cleaning-systems-cip/ 84 Brunelle, D. J. (2001). Macrocyclic Oligomers of Engineering Thermoplastics. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 4712–4720). Elsevier. https://doi.org/10.1016/B0-08-043152-6/00822-6 88 85 Pilli, R., & ASSIS, F. (2018). Organic Synthesis: New Vistas in the Brazilian Landscape. Anais Da Academia Brasileira de Ciências, 90, 895–941. https://doi.org/10.1590/0001-3765201820170564 86 Dever, J. P., George, K. F., Hoffman, W. C., & Soo, H. (2000). Ethylene Oxide. In KirkOthmer Encyclopedia of Chemical Technology. John Wiley & Sons, Ltd. https://doi.org/10.1002/0471238961.0520082504052205.a01 87 Blanckenberg, A., & Malgas-Enus, R. (2019). Olefin epoxidation with metal-based nanocatalysts. Catalysis Reviews, 61(1), 27–83. https://doi.org/10.1080/01614940.2018.1492503 88 Oldring, P.K.T. (2003). Coatings, Colorants, and Paints. Encyclopedia of Physical Science and Technology (Third Edition). 89 Varinder, K. A., Badine, D.M. and Vijayalakshmi, A.M. (2006). Asymmetric synthesis of epoxides and aziridines from aldehydes and imines. In A. Yudin, A. K. (Red.) . Aziridines and Epoxides in Organic Synthesis (pp1-37). Toronto, Canada. John Wiley & Sons. 90 Crandall, J. K., & Apparu, M. (2005). Base-Promoted Isomerizations of Epoxides. In Organic Reactions (pp. 345–443). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471264180.or029.03 91 Gorzynski Smith, J. (1984). Synthetically Useful Reactions of Epoxides. Synthesis, 1984(08), 629–656. https://doi.org/10.1055/s-1984-30921 92 Cowie, J. M. G. & Arrighi, V. (2007). Polymers: Chemistry and Physics of Modern Materials. CRC Press. 93 Brocas, A.-L., Mantzaridis, C., Tunc, D., & Carlotti, S. (2013). Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Progress in Polymer Science, 38(6), 845–873. https://doi.org/10.1016/j.progpolymsci.2012.09.007 94 Hadjichristidis, N., & Hirao, A. (Eds.). (2015). Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications. Springer Japan. https://doi.org/10.1007/978-4- 431-54186-8 95 Parker, R. E., & Isaacs, N. S. (1959). Mechanisms Of Epoxide Reactions. Chemical Reviews, 59(4), 737–799. https://doi.org/10.1021/cr50028a006 96 Bonollo, S., Lanari, D., & Vaccaro, L. (2011). Ring‐Opening of Epoxides in Water. European Journal of Organic Chemistry, 2011(14), 2587–2598. https://doi.org/10.1002/ejoc.201001693 97 Ravve, A. (2012). Principles of polymer chemistry, third edition. Principles of Polymer Chemistry, Third Edition. doi:10.1007/978-1-4614-2212-9. 98 Bastin, M., Raymenants, J., Thijs, M., Vananroye, A., Koeckelberghs, G., & Vankelecom, I. F. J. (2021). Epoxy-based solvent-tolerant nanofiltration membranes prepared via non- 89 solvent induced phase inversion as novel class of stable membranes. Journal of Membrane Science, 626, 119206. https://doi.org/10.1016/j.memsci.2021.119206 99 SN2 Mechanism—An overview | ScienceDirect Topics. (n.d.). Retrieved April 26, 2022, from https://www.sciencedirect.com/topics/chemistry/sn2-mechanism 100 Rozenberg, B. A. (1986). Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. In K. Dušek (Ed.), Epoxy Resins and Composites II (Vol. 75, pp. 113– 165). Springer-Verlag. https://doi.org/10.1007/BFb0017916 101 McCoy, J. D., Ancipink, W. B., Clarkson, C. M., Kropka, J. M., Celina, M. C., Giron, N. H., Hailesilassie, L., & Fredj, N. (2016). Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine. Polymer, 105, 243–254. https://doi.org/10.1016/j.polymer.2016.10.028 102 Riccardi, C. C., & Williams, R. J. J. (1986). A kinetic scheme for an amine-epoxy reaction with simultaneous etherification. Journal of Applied Polymer Science, 32(2), 3445–3456. https://doi.org/10.1002/app.1986.070320208 103 Ligon, S., Schwentenwein, M., Gorsche, C., Stampfl, J., & Liska, R. (2015). Toughening of photo-curable polymer networks: A review. Polym. Chem., 7. https://doi.org/10.1039/C5PY01631B 104 Laird, R. M. (1969). The Mechanism of Epoxide Reactions. Part X1I.l Reactions of Ethylene Oxide with Alcohols in the Presence of Sodium Alkoxides and of Tertiary Amines. Journal of the Chemical Society B: Physical Organic, 0, 1062–1068. https://doi.org/10.1039/J29690001062 105 Kushch, P. P., Komarov; B.A. and Rozenberg B.A. (1978). The role of proton donors in initiation of polymerization of epoxide compounds by tertiary amines. Polymer science U.S.S.R. 21. 1867-1875. 106 Sorokin, M.F., Shode, L.G. and Shteinpress, A.B., (1969). Polymerization of phenyl glycidyl ether induced by tertiary amines in the absence of proton donating compounds. D. I. MIendeleyev Institute of Chemical Technology, Moscow. 107 Sudo, A. (2013). Anionic Ring-Opening Polymerization. In S. Kobayashi & K. Müllen (Eds.), Encyclopedia of Polymeric Nanomaterials (pp. 1–11). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_172-1 108 Sorokin, M.F., Shode, L.G. and Shteinpress, A.B., (1970). Polymerization of phenyl glycidyl ether in the presence of tertiary amines and alcohols. D. I. MIendeleyev Institute of Chemical Technology, Moscow. 109 Rodriguez, C. G., Ferrier, R. C., Helenic, A., & Lynd, N. A. (2017). Ring-Opening Polymerization of Epoxides: Facile Pathway to Functional Polyethers via a Versatile Organoaluminum Initiator. Macromolecules, 50(8), 3121–3130. https://doi.org/10.1021/acs.macromol.7b00196 90 110 Ricciardi, F., Joullié, M. M., Romanchick, W. A., & Griscavage, A. A. (1982). Mechanism of imidazole catalysis in the curing of epoxy resins. Journal of Polymer Science: Polymer Letters Edition, 20(2), 127–133. https://doi.org/10.1002/pol.1982.130200209 111 Barton, J. M., & Shepherd, P. M. (1975). The Curing Reaction of an Epoxide Resin with 2- Ethyl-4-methylimidazole, a Calorimetric Study of the Kinetics of Formation of EpoxideImidazole Adducts. Die Makromolekulare Chemie, 176(4), 919–930. https://doi.org/10.1002/macp.1975.021760408 112 Ellis, B. (1993). Chemistry and Technology of Epoxy Resins. Springer Netherlands. https://doi.org/10.1007/978-94-011-2932-9 113 Berger, J., & Lohse, F. (1985). Polymerization of p-cresyl glycidyl ether catalyzed by imidazoles I. The influence of the imidazole concentration, the reaction temperature, and the presence of isopropanol on the polymerization. Journal of Applied Polymer Science, 30(2), 531–546. https://doi.org/10.1002/app.1985.070300207 114 López-Barajas, F., Ramos-DeValle, L. F., Sánchez-Valdes, S., Ramírez-Vargas, E., Martínez-Colunga, G., Espinoza-Martínez, A. B., Flores-Gallardo, S., Mendez-Nonell, J., Morales-Cepeda, A. B., Lozano-Ramirez, T., & Beltrán-Ramírez, F. I. (2019). Curing kinetics of diglycidyl ether of Bisphenol-A epoxy system using a tertiary amine, through the study of its rheometric characteristics. Polymer Testing, 73, 346–351. https://doi.org/10.1016/j.polymertesting.2018.11.043 115 Lenntech (2013). Chemical Pretreatment For RO and NF. 111, 16. 116 Tolba, A. M., & Mohamed, R. A. (n.d.). Performance and Characteristics of Reverse Osmosis Membranes. Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt. 117 Chevali, V., & Kandare, E. (2016). 13—Rigid biofoam composites as eco-efficient construction materials. In F. Pacheco-Torgal, V. Ivanov, N. Karak, & H. Jonkers (Eds.), Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials (pp. 275–304). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100214-8.00013-0 118 Ward, R. S., & Jones, R. L. (2011). 1.125—Polyurethanes and Silicone Polyurethane Copolymers. In P. Ducheyne (Ed.), Comprehensive Biomaterials (pp. 431–477). Elsevier. https://doi.org/10.1016/B978-0-08-055294-1.00272-5 119 Verbeke, R., Davenport, D. M., Stassin, T., Eyley, S., Dickmann, M., Cruz, A. J., Dara, P., Ritt, C. L., Bogaerts, C., Egger, W., Ameloot, R., Meersschaut, J., Thielemans, W., Koeckelberghs, G., Elimelech, M., & Vankelecom, I. F. J. (2021). Chlorine-Resistant EpoxideBased Membranes for Sustainable Water Desalination. Environmental Science & Technology Letters, 8(9), 818–824. https://doi.org/10.1021/acs.estlett.1c00515 120 James J. L., Dale W. S., (2011). Chemistry, Formulation, and Properties of Adhesives. Adhesives Technology for Electronic Applications (Second Edition), 2011 91 121 Hexion Inc, (2001). Technical Data Sheet 122 Merck (n.d.). Poly(ethylene glycol) diglycidyl ether. Retrieved October 3, 2022, from http://www.sigmaaldrich.com/ 123 Mengyuan, H., Changlin, W., Tong, X., Ping, D., Xiaojun, Y., Huaying, S., Congying, L., Peng, G., & Zhufeng, C. (2022). Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polymer Bulletin. https://doi.org/10.1007/s00289-022-04412-x 124 Biosynth (n.d.). Poly(ethylene glycol) diglycidyl ether,Mn~500. Retrieved October 19, 2022, from https://www.biosynth.com/p/FP180370/26403-72-5-polyethylene-glycol-digl… 125 Lenaerts, N. (2022). Influence of support layer on chemically robust epoxide-based thinfilm composite membranes. [Masterthesis, KULeuven] 126 Nikolaeva, D., Azcune, I., Sheridan, E., Sandru, M., Genua, A., Tanczyk, M., Jaschik, M., Warmuzinski, K., Jansen, J. C., & Vankelecom, I. F. J. (2017). Poly(vinylbenzyl chloride)- based poly(ionic liquids) as membranes for CO2 capture from flue gas. Journal of Materials Chemistry A, 5(37), 19808–19818. https://doi.org/10.1039/C7TA05171A 127 Vanbruggenhout, S. (2021). Interfacial poly(epoxyether) chemistry as a novel platform for CO2-selective thin-film composite membranes. [Masterthesis, KULeuven]. 128 Bull, C. (2022). Optimization of poly(β-alkanolamine) solvent tolerant nanofiltration membranes. [Masterthesis, KULeuven]. 129 Porometer. (n.d.). Glossary. Retrieved December 21, 2022, from https://www.porometer.com/knowledge-center/glossary 130 Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356. 131 Mokobi, F. (2022). Scanning Electron Microscope (SEM)- Definition, Principle, Parts, Images. Microbe Notes. https://microbenotes.com/scanning-electron-microscope-sem/ 132 U.S. Department of the interior. (2000). Characterization of the Hydrophobicity of Polymeric Reverse Osmosis and Nanofiltration Membranes: Implications to Membrane Fouling. Desalination and Water Purification Research and Development Program Report No. 57. https://www.usbr.gov/research/dwpr/reportpdfs/report57.pdf 133 Nanoscience Instruments. (n.d.). Advancing and Receding Contact Angles. Retrieved December 13, 2022, from https://www.nanoscience.com/techniques/tensiometry/advancingand-recedin… 92 134 ThermoFisher scientific. (n.d.). X-Ray Photoelectron Spectroscopy. Retrieved December 13, 2022, from https://www.thermofisher.com/uk/en/home/materials-science/xpstechnology… 135 Van den Mooter, P.-R., Dedvukaj, L., & Vankelecom, I. F. J. (2021). Use of Ionic Liquids and Co-Solvents for Synthesis of Thin-Film Composite Membranes. Membranes, 11(4), 4. https://doi.org/10.3390/membranes11040297 136 Freger, V. (2005). Kinetics of Film Formation by Interfacial Polycondensation. Langmuir, 21(5), 1884–1894. https://doi.org/10.1021/la048085v 137 Falca, G., Musteata, V. E., Chisca, S., Hedhili, M. N., Ong, C., & Nunes, S. P. (2021). Naturally Extracted Hydrophobic Solvent and Self-Assembly in Interfacial Polymerization. ACS Applied Materials & Interfaces, 13(37), 44824–44832. https://doi.org/10.1021/acsami.1c07584 138 Li, K., Zhu, J., Liu, D., Zhang, Y., & Van der Bruggen, B. (2021). Controllable and Rapid Synthesis of Conjugated Microporous Polymer Membranes via Interfacial Polymerization for Ultrafast Molecular Separation. Chemistry of Materials, 33(17), 7047–7056. https://doi.org/10.1021/acs.chemmater.1c02143 139 Lonsdale, H. K., Riley, R. L., Lyons, C. R., & Carosella, D. P. (1971). Transport in Composite Reverse Osmosis Membranes. In M. Bier (Ed.), Membrane Processes in Industry and Biomedicine: Proceedings of a Symposium held at the 160th National Meeting of the American Chemical Society, under the sponsorship of the Division of Industrial and Engineering Chemistry, Chicago, Illinois, September 16 and 17, 1970 (pp. 101–122). Springer US. https://doi.org/10.1007/978-1-4684-1911-5_6 140 Singh, N., Chen, Z., Tomer, N., Wickramasinghe, S. R., Soice, N., & Husson, S. M. (2008). Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. Journal of Membrane Science, 311(1), 225–234. https://doi.org/10.1016/j.memsci.2007.12.036 141 Briggs, L. H., Colebrook, L. D., Fales, H. M., & Wildman, W. C. (1957). Infrared Absorption Spectra of Methylenedioxy and Aryl Ether Groups. Analytical Chemistry, 29(6), 904–911. https://doi.org/10.1021/ac60126a014 142 Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1990). Introduction to infrared and Raman spectroscopy (3rd ed). Academic Press. 143 Seynaeve, M.(2019). Epoxide chemistry for thin-film composite membranes. [Masterthesis, KULeuven]. 144 Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed). CRC Press. 93 145 Alqarni, M. H., Haq, N., Alam, P., Abdel-Kader, M. S., Foudah, A. I., & Shakeel, F. (2021). Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. Journal of Molecular Liquids, 331, 115700. https://doi.org/10.1016/j.molliq.2021.115700 146 Liang, Y., Zhu, Y., Liu, C., Lee, K.-R., Hung, W.-S., Wang, Z., Li, Y., Elimelech, M., Jin, J., & Lin, S. (2020). Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nature Communications, 11(1), 1. https://doi.org/10.1038/s41467-020-15771-2 147 Syamani, F. (2020). Cellulose-based membrane for adsorption of dye in batik industry wastewater. International Journal of Hydrology, 4, 281–283. https://doi.org/10.15406/ijh.2020.04.00255 148 Bogaerts, C. (2020). Epoxide-based polymers as a novel platform for chemically robust membranes. [masterthesis, KULeuven]. 149 Kishore Chand, A. A., Bajer, B., Schneider, E. S., Mantel, T., Ernst, M., Filiz, V., & Glass, S. (2022). Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions. Membranes, 12(6), 6. https://doi.org/10.3390/membranes12060580 150 Domingo, L. R., & Pérez, P. (2011). The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry, 9(20), 7168. https://doi.org/10.1039/c1ob05856h 151 Santiso, E. E., George, A. M., Sliwinska-bartkowiak, M., Nardelli, M. B., & Gubbins, K. E. (2005). Effect of Confinement on Chemical Reactions. Adsorption, 11(S1), 349–354. https://doi.org/10.1007/s10450-005-5949-9 152 Machida, H., Yamada, H., Fujioka, Y., & Yamamoto, S. (2015). CO 2 Solubility Measurements and Modeling for Tertiary Diamines. Journal of Chemical & Engineering Data, 60(3), 814–820. https://doi.org/10.1021/je500927h 153 PubChem. (n.d.). PubChem. Retrieved November 11, 2022, from https://pubchem.ncbi.nlm.nih.gov/ 154 ChemicalBook—Chemical Search Engine. (n.d.). Retrieved November 11, 2022, from https://www.chemicalbook.com/ProductIndex_EN.aspx 155 ChemSpider | Search and share chemistry. (n.d.). Retrieved November 11, 2022, from http://www.chemspider.com/ 156 Guidechem Chemical Network—China Chemical Manufacturers,suppliers,B2B Marketplace. (n.d.). Retrieved November 11, 2022, from https://www.guidechem.com/ 94 157 Ham, Y., Kim, S., Shin, Y., Lee, D., Yang, M., Min, J., & Shin, J. (2010). A comparison of some imidazoles in the curing of epoxy resin. Journal of Industrial and Engineering Chemistry - J IND ENG CHEM, 16, 556–559. https://doi.org/10.1016/j.jiec.2010.03.022 158 Gao, L., Wang, J., Shi, L., Huang, L., Wang, Y., Fan, X., Yu, T., Zhu, M., & Zou, Z. (2007). Hybrid mesoporous SC/SBA as a chemosensor for recognizing Cu2+. In D. Zhao, S. Qiu, Y. Tang, & C. Yu (Eds.), Studies in Surface Science and Catalysis (Vol. 165, pp. 861–864). Elsevier. https://doi.org/10.1016/S0167-2991(07)80454-X 159 Merck KGaA. (n.d.). IR Spectrum Table. Retrieved December 23, 2022, from https://www.sigmaaldrich.com/BE/en/technical-documents/technical-articl… 160 Ramasamy, R. (2015). Vibrational spectroscopic studies of imidazole. Armenian Journal of Physics, 8(1), 51-55. https://arar.sci.am/dlibra/publication/26144/edition/23397 161 Ghosh, A. K., & Hoek, E. M. V. (2009). Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of Membrane Science, 336(1), 140–148. https://doi.org/10.1016/j.memsci.2009.03.024 162 Liu, F., Wang, L., Li, D., Liu, Q., & Deng, B. (2019). A review: The effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 9, 35417–35428. https://doi.org/10.1039/C9RA07114H 163 Liu, F., Wang, L., Li, D., Liu, Q., & Deng, B. (2019). A review: The effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 9, 35417–35428. https://doi.org/10.1039/C9RA07114H 164 Bugaenko, D. I., Karchava, A. V., & Yurovskaya, M. A. (2020). The versatility of DABCO: Synthetic applications of its basic, nucleophilic, and catalytic properties. Chemistry of Heterocyclic Compounds, 56(3), 265–278. https://doi.org/10.1007/s10593-020-02655-y 165 Piradashvili, K., Alexandrino, E. M., Wurm, F. R., & Landfester, K. (2016). Reactions and Polymerizations at the Liquid–Liquid Interface. Chemical Reviews, 116(4), 2141–2169. https://doi.org/10.1021/acs.chemrev.5b00567 166 Li, S., Shi, Y., Li, P., & Xu, J. (2019). Nucleophilic Organic Base DABCO-Mediated Chemospecific Meinwald Rearrangement of Terminal Epoxides into Methyl Ketones. The Journal of Organic Chemistry, 84. https://doi.org/10.1021/acs.joc.8b03171 95 167 Oizerovich-Honig, R., Raim, V., & Srebnik, S. (2010). Simulation of Thin Film Membranes Formed by Interfacial Polymerization. Langmuir, 26(1), 299–306. https://doi.org/10.1021/la9024684 168 PubChem. (n.d.). 1,4-Diazabicyclo[2.2.2]octane. Retrieved December 26, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/9237 169 Verbeke, R., Seynaeve, M., Bastin, M., Davenport, D. M., Eyley, S., Thielemans, W., Koeckelberghs, G., Elimelech, M., & Vankelecom, I. F. J. (2020). The significant role of support layer solvent annealing in interfacial polymerization: The case of epoxide-based membranes. Journal of Membrane Science, 612, 118438. https://doi.org/10.1016/j.memsci.2020.118438 170 Van Havere, D. (2022). Interfacial synthesis of high-EO content TFC membranes for CO2 separations. [Unpublished manuscript]. 171 Tandon, R., Nigst, T. A. & Zipse, H. (2013). Inductive Effects through Alkyl Groups - How Long is Long Enough? European Journal of Organic Chemistry 2013. 172 González, M. G., Cabanelas, J. C., & Baselga, J. (2012). Applications of FTIR on Epoxy Resins—Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. In Infrared Spectroscopy—Materials Science, Engineering and Technology. IntechOpen. https://doi.org/10.5772/36323 173 Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97. https://doi.org/10.17509/ijost.v4i1.15806 174 Ensing, B., Tiwari, A., Tros, M., Hunger, J., Domingos, S. R., Pérez, C., Smits, G., Bonn, M., Bonn, D., & Woutersen, S. (2019). On the origin of the extremely different solubilities of polyethers in water. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-019- 10783-z 175 Anastassopoulou, J. D. (1991). Mass and FT-IR Spectra of Quaternary Ammonium Surfactants. In E. Rizzarelli & T. Theophanides (Eds.), Chemistry and Properties of Biomolecular Systems (Vol. 8, pp. 1–9). Springer Netherlands. https://doi.org/10.1007/978- 94-011-3620-4_1 176 Selyanchyn, R., Ariyoshi, M., & Fujikawa, S. (2018). Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes. Membranes, 8, 121. https://doi.org/10.3390/membranes8040121 177 Han, Y., & Ho, W. S. W. (2021). Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 628, 119244. https://doi.org/10.1016/j.memsci.2021.119244 96 178 Edwards, J. O., & Pearson, R. G. (1962). The Factors Determining Nucleophilic Reactivities. Journal of the American Chemical Society, 84(1), 16–24. https://doi.org/10.1021/ja00860a005 179 Verbeke, R. (2022). ‘On water’ catalysis of phenyl glycidyl ether with tertiary amines. [unpublished manuscript]. 180 Kuznicki, T., Masliyah, J. H., & Bhattacharjee, S. (2009). Aggregation and Partitioning of Model Asphaltenes at Toluene−Water Interfaces: Molecular Dynamics Simulations. Energy & Fuels, 23(10), 5027–5035. https://doi.org/10.1021/ef9004576

Universiteit of Hogeschool
Master in de bio-ingenieurswetenschappen: milieutechnologie
Publicatiejaar
2023
Promotor(en)
Ivo Vankelecom
Kernwoorden
Share this on: