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3. Introduction: 

 

3.1. Context 

The transdermal administration of drugs has gained interest over the years due to certain 

advantages over oral and intravenous administration, such as avoiding the first-pass effect, 

sustained drug delivery and avoiding low pH (e.g. the stomach) which can degrade certain 

molecules. Good patient compliance is reported, but some patients experience irritated or 

allergic skin due to the patch or matrix itself of transdermal patches. 

To understand the quality and performance of a transdermal drug delivery system, ex-vivo 

studies are required to estimate the permeation of a molecule (or a formulation, in case of 

ointments). Generally, human skin is used, often obtained from cadavers or plastic surgery 

and  is obviously very scarce and not easily accessible (1). It goes without saying that a 

lot of (ethical) questions rise in the use of animal skin as an alternative to human skin. 

Regardless that animal skin in living animals is an alternative than excised human skin, 

the extrapolation to human skin is not always straightforward. In the last decades, research 

has been focused on finding new alternatives that do not use animals (and especially not 

harm them), such as the development of surrogate systems (for example the use of 

artificial membranes, chromatographic techniques, …)(2). 

3.2. The skin 

The skin is the largest organ of the human body and plays an important role in protecting 

the body from xenophobic agents to enter, on the one hand, and water to leave it, on the 

other. The skin consists of three main layers (figure 1): the most outer layer is called the 

epidermis, right underneath lies the dermis, to be by the hypodermis. The barrier function 

is mainly due to the most outer layer of the epidermis: the stratum corneum (10-30µm 

thick)(2). This layer consists of densely packed corneocytes which contain packed 

organized keratin filaments and filaggrin. The corneocytes are arranged in layers, varying 

from 10 up to 25 layers parallel to the skin surface. These cells possess a ‘brick and mortar’ 

structure, combined with a lipid matrix composed of ceramides, cholesterol and free fatty 

acids filling up the space between the corneocytes (1–3). This makes it very hard for 

foreign molecules to penetrate this layer of alternating hydrophobic and hydrophilic 

regions. The next layer (figure 1), the dermis, consists of connective tissue (or collagen) 

that is heavily vasculated with blood- and lymphatic vessels. It has a metabolic and 

protective function. Throughout the skin, multiple appendages are present, such as hair 

follicles, sebaceous- and sweat glands (1,3). 
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Figure 1: The anatomy of the skin (4) 

Permeation of compounds through the skin to the vascular region of the dermis can follow 

three different pathways (figure 2): 1) the transcellular route (C), this pathway uses 

diffusion across the corneocytes. It is a very resistant pathway for drug permeation due to 

both the lipophilic (i.e. the lipid matrix) and hydrophilic regions (i.e. cytoplasm of the 

corneocytes) present, as discussed above. Another way for compounds to reach the dermis 

is 2) the intercellular route (A), where the mechanism is diffusion across the lipid matrix. 

The third pathway to reach the blood flow is 3) the appendageal route (B). In this pathway, 

the foreign substance can travel down the ducts of sweat and sebaceous glands, or down 

the hair follicle. Because these appendages appear in a small area of the total surface of 

the skin (approximately 0.1%), it is considered as a minor transdermal permeation route 

in comparison to the other two routes (1–3,5). 
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Figure 2: The different drug permeation routes througt the skin. A: intercellular 

penetration pathway, B: follicular penetration pathway, C: transcellular penetration 

pathway (6). 

3.3.  Parameters that influence the permeation through the skin 

The passage of pharmaceutical substances through the skin depends on their 

physicochemical properties but also on the interaction with the membrane. Some of the 

main properties will be discussed below. 

3.3.1. The partition coefficient 

Log P, or P (the partition coefficient), is the ratio of the concentrations of a solute or 

chemical component in two immiscible solvents (a hydrophilic and lipophilic phase, usually 

water and 1-octanol, respectively). It can be determined, for example, by the ‘shake-flask 

method’(7). This partition coefficient tells something about the lipophilicity of the substance 

and about the expected passive diffusion through the phospholipid bilayer of the biological 

membranes of human cells. The Lipinski rule of five indicates that molecules with a log P 

greater than 5 answered to poor oral absorption. An ideal value for oral absorption is a log 

P between 1.35 – 1.8 (8). 

3.3.2. Molecular weight 

Molecular weight is defined as the average mass of a molecule of a compound compared 

to ¹/₁₂ of the mass of carbon 12 and calculated as the sum of the atomic weights of the 

constituent atoms. It is often expressed in the units g/mol or Dalton. According to the 

Lipinski rule of five for oral absorption, a molecular weight above 500 Dalton translates to 

poor absorption (8). Of course this is for oral absorption, not permeation through the skin, 

but the substance also has to pass membranes in the stomach/intestine just as through 

the skin. Molecular weight plays a fairly large role in skin permeability and the larger the 

molecule, the worse the absorption (9). Generally, molecules larger than 500 Dalton are 

considered impermeable through the skin. Arguments for this are: 1) all molecules that 

cause contact allergy are smaller than 500 Dalton, 2) all molecules used in topical 

formulations or transdermal drug delivery systems are smaller than 500 Dalton (9). 
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3.3.3. Melting point 

The melting point of a substance is the temperature (or temperature-range) where the 

phase of the substance changes from solid to liquid. For skin permeability, a melting point 

below 200 ºC is necessary, which is related to an appropriate solubility (10). 

3.4. Relation between skin permeability and steady state flux 

As mentioned above, drug permeation through the skin happens mainly by passive 

diffusion through biological membranes. Adolf Fick developed two laws to describe and 

quantify this process: the First Law assumes steady state diffusion, while Fick's Second 

Law predicts the concentration gradient changes through diffusion, with time. In other 

words, the second law describes diffusion through the irregular intercellular regions of the 

stratum corneum. Only the steady-state diffusion will be discussed further. In this model, 

the stratum corneum lipid matrix is considered as a homogeneous medium surrounding 

corneocytes, through which the chemical product diffuses from high to low concentration 

according to the first law of Fick (11): 

Q = D.a/h.t.ΔCs         (eq.1) 

where Q stands for the amount of substance that diffuses in a small period of time over a 

small surface, D is the diffusion constant, a describes the surface area of the membrane 

(skin) (in cm²), t is a time period (in s), h represents the distance (in mm) the substance 

will travel (in this case, the thickness of the stratum corneum) and ΔCs the concentration 

gradient (in millimoles) across the surface of the skin (11).  

The above equation (eq. 1) can be rearranged as follows to define steady state flux (Jss) 

(11): 

Jss = Q/(a.t) = D.ΔCs/h        (eq. 2) 

The flux is defined as the amount of solute per unit area and per unit time, often 

mass/cm² per hour. 

Because it is easier and more convenient to use concentrations in terms of the dissolved 

substance in the vehicle (Cv) and a partition coefficient K (which describes the partition 

between the vehicle and the skin, no units) instead of using Cs (solute concentration in the 

skin), eq. 2 can also be written as (11):   

Jss = (K.D.ΔCv)/h    (where K = Cs/Cv)      (eq. 3) 

The relation between Kp (the permeability coefficient, expressed in centimeter per second) 

and the steady state flux across the skin is described in equation 4. This equation indicates 
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that the skin permeability (Kp) is actually the steady state flux across the skin normalized 

by the concentration gradient, ΔCv (11): 

Kp = Jss /ΔCv           (eq. 4) 

The skin permeability coefficient (Kp) of a substance is a parameter that is determined by 

several techniques. 

3.5. In-vivo skin permeation studies 

In-vivo testing on human skin is still considered the golden standard for skin permeation 

testing, although it is not always possible because of ethical questions and other 

considerations. Most in-vivo studies are organized in (pre)clinical studies and are 

performed by taking several blood and/or urine samples from the participants at specific 

time intervals. This is, of course, very invasive, time-consuming and labor-intensive and 

not applicable for high-throughput screening. In-vivo skin testing is often limited to 

hypersensitivity and irritation tests (1).  

Besides on human skin, these in-vivo experiments are also often executed on animals such 

as rats or dogs. The Organisation for Economic Co-operation and Development (OECD) 

describes a guideline (427) in which recommendations are defined depending on the used 

method. These recommendations cover, for example, the selection of the species, the 

number and sex of the species, the housing and feeding conditions, the application on the 

skin, the duration of exposure and the sampling. This is necessary to create standardized 

methods and to take animal rights into account (12). 

Concerning animal testing, there is always a need for reduction, refinement and 

replacement (the 3R principle)(13). Luckily there are already some techniques that reduce 

the use of animals, or even replace them. Unfortunately, it is still very difficult to reproduce 

the human skin due to for instance the complexity of the different layers, the presence of 

living cells and the blood flow. Some of the alternatives to in-vivo animal testing that can 

be used to determine the skin permeability of a substance are listed in Section 1.6.. 

3.6. In-vitro skin permeation studies 

3.6.1. Diffusion cells 

There are several in-vitro methods. One type of testing uses the so-called diffusion cells. 

Two types can be distinguished: the static diffusion cell (Franz cell) and the flow-through 

diffusion cell (Bronaugh cell).   
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Figure 3: a) static diffusion cell (14) b) flow-through diffusion cell (15) 

The static diffusion cell (figure 3a) consists of two chambers, the donor chamber and the 

receptor chamber, which are separated by a metal grid. Skin from humans or animals can 

be placed on the metal grid. Both chambers contain a solvent and the receptor chamber is 

placed in a water bath at 37°C to mimic real-life skin conditions. The receptor fluid is kept 

constant in temperature and homogenous in concentration with a stirring device. When a 

substance is dissolved and added to the donor chamber, several measurements are taken 

from the receptor chamber over time to test skin permeation  (1,2,16,17). 

The flow-through diffusion cell (figure 3b) is similar to the static diffusion cell, except that 

it has a continuous flow, the fluid in the receptor chamber is renewed to mimic the blood 

flow underneath real-life skin. This also provides continuous automatic sampling (16,17). 

Diffusion cells are a simpler, faster and cheaper technique than in-vivo methods. A 

disadvantage of diffusion cells are the interlaboratory differences. Guidelines to minimize 

these differences are postulated by OECD guideline 428 (18). Obviously, only a small area 

of the skin is used, causing the physiological conditions (such as blood flow) to disappear. 

This is a drawback compared to in-vivo testing. The use of animal skin should also be taken 

into account, since this makes it harder to extrapolate to human skin.  

3.6.2. Artificial membranes 

An alternative for human skin is highly demanded. Although animal skin is much less 

expensive than human skin, it also gives a less good correlation with skin permeability in 

comparison to human skin and much more variation due to differences in race, age and 

sex of the animals which could potentially lead to differences in skin permeation. These 

considerations indicate the need for the development of synthetically produced 

membranes.  
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3.6.2.1. Parallel Artificial Membranes Permeability Assay 

One of the techniques using artificial membranes for in-vitro skin permeation 

measurements is the Parallel Artificial Membrane Permeability Assay (PAMPA) (figure 4).  

Figure 4: Parallel Artificial Membrane Permeability Assay (PAMPA) (19) 

It consists of a 96-well plate system containing an artificial membrane which separates the 

donor and receptor compartments. The receptor compartment contains a buffer solution 

while the donor compartment contains the dissolved substance of which the permeation 

will be determined. By adding cetramides, cholesterol and stearic acid to the already 

existing membrane (which is made of phospholipid/dodecane), a solid alternative for the 

skin membrane is obtained (2). Because of PAMPA’s short time period required for a high-

throughput screening it is preferred above diffusion cells. It can be considered as a low-

cost and time-effective alternative method for in-vivo testing. However certain structural 

elements of the real life human skin are not present (such as corneocytes and follicles) 

(2). 

3.6.2.2. Artificial membranes 

Other in-vitro methods that use artificial membranes are 3D tissue models that contain 

living cells (meaning they can metabolize substances and are able to perform mitosis). 

These cells are created by culturing certain components of the human skin, such as 

keratinocytes and fibroblasts. Several of these in-vitro models are commercialized, for 

example EpiDerm™, EpiSkin™, and Labskin™. However, studies have shown that these 

membranes containing living cells are more permeable than the human skin itself  (20). 

Therefore, these 3D models are mostly applied in the context of irritation and toxicity 

testing (1,2). 

Artificial membranes based on silicone (such as Silatos™, Silastic®, Strat-M™ and 

polydimethylsiloxane) can also be used and give acceptable results according to different 

studies for both lipophilic and hydrophilic substances (21,22). These synthetic membranes 

are a cheap alternative in comparison to in-vivo studies. For Strat-M™, the membrane 

consists of multiple layers: the outer layer consists of two layers of polyethersulfone (PES, 
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more resistant to diffusion), while the bottom layer is a more diffusive polyolefin layer. 

Although this is a good attempt to imitate the human skin, the outer layer is not much 

more resistant in comparison to the bottom layer and does not function as a rate-

determining barrier as does the stratum corneum in human skin (1,2). 

3.7. In-silico approaches for predicting skin permeability 

Another approach to predict the skin permeability is with in-silico methods. These models 

are made based on the molecular representation of the molecule. They try to describe the 

relationship between (theoretical) molecular descriptors and an experimental activity value 

(such as skin permeability). These molecular descriptors may include physiochemical, 

topological and geometrical properties of the molecule. Descriptors can be measured 

experimentally (for example, log P) or are theoretical and thus calculated in-silico (for 

example, theoretical descriptors). The relationship built is called a quantitative structure-

activity relationship (QSAR) and allows to predict the activity of a new compound (without 

actually measuring it). Obviously this is a valuable technique because it can be used early 

in development, even before the molecule is synthesized (23).  

When making a selection of the required set of molecular descriptors, there are two 

options. Thousands of molecular descriptors are described in the literature. To to make a 

selection of those ones are important, variable selection techniques can be applied, while 

(multiple) chemometric regression techniques can be used to build the QSAR model. Some 

examples of chemometric regression techniques are multiple linear regression (MLR) (24), 

principal component regression (PCR) (25) and partial least squares (PLS) regression (25). 

More complex non-linear modelling techniques can also be used, such as artificial neural 

networks (ANN) (26), classification and regression trees (CART) and multivariate adaptive 

regression splines (MARS). These techniques narrow thousands of potential descriptors 

down to just a few applied. Another approach to narrow down descriptors, is to apply a set 

of molecular descriptors as in popular QSARs, such as the Linear Free Energy Relationship 

(LFER) models. The Lipinski’s rule of five (rule of thumb) is a qualitative approach. Lipinki’s 

rule of five describes some values of descriptors that, if answered positively, relate to poor 

oral absorption. These rules include: a molecular weight over 500 Dalton, more than five 

hydrogen bond donors, more than ten hydrogen bond acceptors, and a log P above five. 

LFER describes relationships between some free-energy related property, such as 

solubility,  absorption, partitioning between hydrophilic and lipophilic phases and 

adsorption to five molecular descriptors (23). The following equation is used:  

SP = c + eE + sS +aA + bB+ vV       (eq. 5) 

where SP describes the molecular activity, in our case log Kp. The capital letters describe 

five different solute (molecular) descriptors and the lower case letters describe the 

https://en.wikipedia.org/wiki/Gibbs_free_energy
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corresponding coefficients of these molecular descriptors. E is the solute excess molar 

refractivity in (cm3/mol)/10, S the solute dipolarity/polarizability, A the solute’s hydrogen 

bond acidity, B the solute’s hydrogen bond basicity and V the McGowan characteristic 

volume in (cm3/mol)/100 (27).  

3.8. Chromatography  

Other methods to estimate the permeation of different active pharmaceutical and cosmetic 

substances involve chromatographic techniques. Skin permeability data can be predicted 

by combining the chromatographic retention with molecular descriptors (28). 

3.8.1. Collagen columns 

Collagen is a protein in the epidermis. Stationary phases that contain collagen show 

retention caused by the combination of specific (polar) and hydrophobic solute–stationary 

phase interactions. Although research (29) showed that the interaction of substances with 

collagen is less important in comparison to their hydrophobicity and binding to keratin, 

these columns may be an addition to improve chromatographic models for skin 

permeability. 

3.8.2. Micellar liquid chromatography 

Micellar liquid chromatography (MLC) is a mode of reversed-phase liquid 

chromatography (RPLC) in which the mobile phase contains a surfactant at a concentration 

above the critical micellar concentration (CMC). At this concentration, micelles begin to 

form which form a kind of pseudo stationary phase in the mobile phase with both 

hydrophilic and hydrophobic areas. This phenomenon shows a good resemblance to the 

human skin phospholipids and leads to accurate predictions of drug partitioning over 

membranes. Surfactants that are often used are cationic cetyltrimethylammonium bromide 

(CTAB), anionic sodium dodecyl sulfate (SDS) or non-ionic polyoxyethylene 23 lauryl ether 

(Brij-35). The mobile phase is kept at conditions close to the human skin, such as a buffer 

pH of 5.5 and a temperature of 37°C. The analyzed compound partitions over three 

different phases until a dynamic equilibrium is established (figure 5): i.e. from the bulk 

solvent phase into micelles (pseudo-phase) and into the stationary phase, but also via 

direct transfer from micelles into the stationary phase. The partitioning of polar compounds 
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goes from the mobile phase into the 

stationary phase, while highly 

hydrophobic compounds go directly from 

micelles into the stationary phase (30,31). 

Figure 5: Interaction of a drug molecule 

in an MLC system (32) 

Because the surfactant monomers also cover a number of free silanol groups of the 

stationary phase, less tailing occurs. Degradation of the column occurs also less 

frequently in comparison to the IAM columns (see further) since the tenside molecules 

are renewed permanently and protect the nonpolar chains of the stationary phase . This 

has as a disadvantage that mass transfer happens rather slow due to making the 

stationary phase more polar (31). Furthermore, this technique has been shown to be 

simple, cheap and fast to obtain micelle-water partition coefficient values (logPmw) 

which allow the prediction of the skin permeability (log Kp) via QSAR (30). 

Another technique used for predicting skin permeability that uses surfactants above the 

critical micellar concentration is micellar electrokinetic chromatography (MEKC). This is a 

modification of capillary electrophoresis. Electrophoretic methods are faster and cheaper 

than chromatographic systems. This technique differs most from the biopartitioning 

process of the skin in comparison to other techniques further described (33). 
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3.8.3. Immobilized artificial membrane chromatography 

The use of Immobilized artificial membrane 

columns (IAM columns) is an option to measure and 

predict skin permeability, which can also be classified 

as an RP-LC system. These columns are ‘packed’ with 

covalently bound phospholipids such as 

phosphatidylcholine, which functions as an artificial 

membrane (figure 6). The zwitterionic stationary phase 

includes an anionic phosphate group and a cationic 

choline group. Both are located into the direction of the 

mobile phase, making sure the mobile phase makes 

contact with the hydrophilic regions first (as is the case 

in real life human skin). Theoretically, this would be a 

good technique to determine skin permeability, yet a 

C18 stationary phase performs better in terms of 

predicting log Kp (34).    

Figure 6: Structure of an IAM 

column (35) 

3.8.4. C18 columns 

A C18 column has octadecyl chains bound to the silica surface, which are usually 

hydrophobic and highly retain nonpolar compounds. This column is used a comparative 

study between RP-LC (C18 column), IAM and micellar electrokinetic chromatography 

(MEKC) states that the C18 column comes closest to modelling the human skin permeability, 

the SDS MEKC and the octanol-water partition systems are decent. The IAM column and 

the sodium taurocholate (STC) MEKC gave the less fitted but still acceptable model for skin 

permeability, compared to the other studied methods. (33) The best studied alternative 

method, an HPLC system with a C18 column, was selected. Based on data from 

chromatographic measurements obtained by this system, a method was developed for 

predicting skin permeability of new compounds (33). 

3.8.5. Cholesterol columns  

Cholesterol is an essential building block in biological cell membranes and has a major 

influence on the permeability of these membranes. The use of cholesterol bonded 

stationary phases is therefore obvious for modelling (skin) permeability. These types of 

columns are excellent to predict lipophilicity and bioactivity. Studies (36) have shown that 

the mechanism of retention of bonded cholesterol stationary phases mainly depends on 

the size and shape of substances. Another quality is the great shape selectivity, a property 
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that depends on temperature. This is likely caused by the liquid crystal properties of 

cholesterol in its native state (37). Another advantage is the possibility to use highly 

aqueous mobile phases without the collapse of the column itself or major influence on the 

retention. This type of column can be used in both reversed-phase and normal-phase liquid 

chromatography. A correlation study investigating the retention from a cholesterol column 

and biological descriptors (such as skin permeability) was performed and concluded that 

significant similarities between chromatographic, partition and biological parameters were 

present (38).  

3.8.6. Keratin columns 

Because the stratum corneum contains a lot of keratin, it is only logical that skin 

permeability of compounds also depends on possible interactions with keratin. Since a good 

model for skin permeability can be accomplished using IAM columns, which is based solely 

on the lipophilicity of the substance, keratin columns can be a valid addition to improve 

these models by including interactions between drugs and keratin. These stationary 

phases, in which keratin is immobilized on silica support, withhold acidic substances in 

specific. A study concludes that this type of column can be used to quantify and measure 

different drug interactions with the skin protein keratin (39).  

3.8.7. Supercritical fluid chromatography 

Supercritical fluid chromatography (SFC) is a chromatographic technique in which the 

mobile phase is kept under supercritical conditions. It was originally invented as a manner 

to analyze thermally labile compounds that require high temperatures in gas 

chromatography (GC), but decompose at those temperatures. More pressure was added 

as a result to compensate for the high temperatures that are required. This resulted in 

supercritical conditions. One may describe SFC as a bridge between GC and HPLC, as the 

mobile phase is a supercritical fluid with properties in between a gas and a liquid. Another 

advantage of a supercritical fluid is the low viscosity (and high diffusivity), which creates 

high columns efficiencies. This technique has never been studied in the context of skin 

permeability (40). 

3.8.7.1. Mobile phase 

The most commonly used mobile phase is carbon dioxide, which behaves as a supercritical 

fluid above its critical temperature of 31.0 °C and critical pressure of 73.8 bar (figure 11). 

Carbon dioxide is nonpolar and miscible with polar solvents such as methanol, ethanol and 

acetonitrile. Solvent gradients with a high percentage of organic modifier (up to 60%)  (41) 

can be used which lead to higher viscosity resulting in (unwittingly working with) subcritical 

conditions. This also depends on the instrument design or the operational conditions, such 
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as working at a lower temperature or pressure. Slight deviations from supercritical 

conditions do not make significant differences in chromatography (40). 

 
Figure 11: Pressure-temperature phase diagram of carbon dioxide (42) 

3.8.7.2. Stationary phase 

A lot of different stationary phases can be used because of the wide polarity range of SFC. 

This is because CO2 is very miscible with most organic modifiers. As a result, both reversed-

phase liquid chromatography and normal-phase liquid chromatography columns can be 

used. A selection of the most commonly used columns is listed below (figure 7): 
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Figure 7:  Stationary phase options for reversed-phase, normal-phase, and supercritical 

fluid chromatography  

The silica base an aminopropyl (NH2) stationary phase is chemically modified with amino 

groups, as can be seen in figure 8A. They function as a weak anion exchanger resulting in 

polar selectivity. This type of column is considered a normal-phase column (43). 

Another stationary phase used in SFC is the phenyl column. The silicasurface of a phenyl-

column is modified with ether-linked phenyl, as can be seen in figure 8B. This results in an 

increased retention of highly  polar and aromatic substances, the latter is caused by π-π 

interactions with conjugated compounds (44). 

 

The HILIC column (HILIC stands for hydrophobic interaction liquid chromatography) is also 

a stationary phase used in SFC. The coating of the HILIC-column consist of cross-linked 

diol groups bound to the silica surface. This results in better polar selectivity. This column 

is also suitable for use in SFC. A representation of the modified silica surface is given in 

figure 8C (45). 

 

At last there are stationary phases made with Ethylene Bridged Hybrid (=BEH) technology. 

BEH particles are hybrid materials which consist of silica and organosiloxanes. These differ 

from silica because of the BEH groups which are distributed throughout the particle. 

Columns of this type provide interaction with polar groups such as phospholipids. 

Modifications are possible with multiple groups, such as C18, C8 or a phenyl-group (46–48). 
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Figure 8: A) Particle of the NH2 column (43) B) Particle of the phenyl column (44) C) 

Particle of the HILIC column (45) 

3.8.7.3. Advantages/drawbacks of SFC 

Advantages of SFC over HPLC are that analysis happens are faster, shorter column lengths 

can be used (more interactions occur in a shorter time/distance) and it produces a better 

resolution (up to five times in comparison to HPLC). A great advantage over methods like 

GC is the possibility to analyze compounds that are thermally labile, also with a high 

resolution. Even compounds with a high molecular weight can be analyzed due to a more 

solubilizing power of the supercritical mobile phase (40). 

Drawbacks of SFC are mainly mobile phase or equipment related and include the limited 

choice of mobile phases and reactions with the mobile phase (for example, at supercritical 

conditions, CO2 forms carbamic acids with primary and secondary amines). Furthermore is 

the analysis of extremely polar compounds not possible due to the nonpolar mobile phase, 

CO2 (40). 
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4. Aim 

The aim of this thesis is to search for an alternative method to predict skin permeability. 

Multiple orthogonal stationary phases (based on a previous study (49)) in SFC will be used 

to relate log k (the logarithm of the retention factor) to log Kp (the logarithm of skin 

permeability) using quantitative structure-activity relationship (QSAR) models. Fifty-eight 

compounds are tested to obtain log k data, using a mobile phase composition determined 

by a gradient screening (based on a limited number of test compounds). To optimize the 

model between log k and log Kp, theoretical molecular descriptors are added. To obtain 

proper models, MLR, stepwise MLR and PLS modelling approaches were used. Four 

stationary phases (HILIC, NH2, phenyl and BEH) and two sets of theoretical molecular 

descriptors (Vega ZZ descriptors and E-dragon descriptors respectively) will be used to 

develop QSAR models for skin permeability. In the end, the obtained models for each 

stationary phase will be compared to empirical models and to each other, to evaluate 

whether log k is in fact an added value to the model and to evaluate which stationary phase 

is best for predicting skin permeability, respectively.  
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5. Methods and materials 

5.1.1. Sample preparation 

The test set contained 58 pharmaceutical and cosmetic compounds, covering relevant log 

Kp (-5.52; -0.24) and log P ranges (-1.08; 4.51). Standards with a concentration of 0.1 

mg/mL were prepared from a stock solution containing 1 mg/mL in methanol (VWR 

international, Radnor, Pennsylvania, USA, HPLC grade).  More concentrated standards 

(0.25 ; 0.5 ; 0.75 and 1 mg/mL in methanol) were prepared for the compounds which gave 

no signal at a concentration of 0.1 mg/mL. 

The pharmaceutical substances used for the test set are given in table 1. The compounds 

were obtained from Sigma (Saint Louis, Missouri, USA), Aldrich (Milwaukee, Wisconsin, 

USA), Merck (Darmstadt, Germany), Bios (Brussels, Belgium), Fluka (Neu-Ulm, 

Switzerland), Sigma-Aldrich (Steinheim, Germany), Bios Coutelier (Anderlecht, Belgium), 

Diosynth OSS Holland (Oss, The Netherlands), Certa (Braine-l’Alleud, Belgium). All 

compounds had a purity higher than 95%. 

Table 1: Specifications of the pharmaceuticals in the test set1,2 

Compound Manufacturer Log Kp1 Molecular weight 

(Dalton)2 

17α-

hydroxyprogesterone 

Sigma -3.22 330.46 

2,4,6-Trichlorophenol Aldrich -1.23 197.45 

2,4-Dichlorophenol Aldrich -1.22 163.00 

2-amino-4-nitrophenol Aldrich -3.18 154.12 

2-nitro-p-

phenylenediamine 

Aldrich -3.30 153.14 

4-amino-2-nitrophenol Aldrich -2.55 154.12 

Acetylsalicylic acid Sigma -2.14 180.16 

Aminopyrine Sigma -2.99 231.23 

Amylobarbital Bios -2.64 226.27 

Antipyrine Unknown -4.18 188.23 

Atropine Sigma -5.07 289.37 

Barbital Bios Coutelier -3.96 184.19 

Benzoic acid Merck -1.52 122.12 

Benzyl alcohol Sigma-Aldrich -2.22 108.14 

Caffeine Fluka -2.78 194.19 

 
1 Log Kp data was extracted from a database found in literature (51) 
2 Molecular weight data was extracted from Vega ZZ 



22 
 

Chloroxylenol Aldrich -1.23 156.61 

Chlorpheniramine 

maleate 

Sigma -2.66 274.79 

Cortexolone Sigma -4.12 346.46 

Cortexone Sigma -3.35 330.46 

Corticosterone Sigma -3.19 346.46 

Cortisone Sigma -5.00 360.44 

Diclofenac Sigma -1.74 296.15 

Ephedrine(.HCl) Aldrich -2.22 165.23 

Estriol Unknown -4.40 288.38 

Estrone Diosynth OSS 

Holland 

-2.44 270.37 

Flurbiprofen Sigma -0.34 244.26 

Haloperidol Unknown -4.04 375.86 

Hydrocortisone Certa -5.52 362.46 

Ibuprofen Sigma -0.24 206.28 

Indomethacin Sigma -1.30 357.79 

Ketoprofen Sigma -1.23 254.28 

Lidocaine Sigma -1.69 234.33 

m-Cresol Sigma-Aldrich -1.82 108.14 

Methyl-4-

hydroxybenzoate 

Fluka -2.04 152.15 

m-Nitrophenol Sigma-Aldrich  -2.25 139.11 

Naproxen Sigma -1.42 230.26 

Nicotinate, ethyl Aldrich -2.20 151.16 

Nicotinate, methyl Aldrich -2.49 137.14 

o-Chlorophenol Aldrich -1.48 128.56 

o-Cresol Sigma-Aldrich -1.80 108.14 

Paracetamol Sigma -3.35 151.16 

p-Cresol Aldrich -0.91 108.14 

Phenobarbitone Unknown -3.35 232.24 

Phenol Merck -1.71 94.11 

Piroxicam Sigma-Aldrich -2.47 331.35 

p-Nitrophenol Sigma-Aldrich -2.25 139.11 

p-Phenylenediamine Aldrich -3.62 108.14 

Prednisolone Sigma -4.35 360.44 

Progesterone Sigma -2.82 314.46 
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Resorcinol Merck -3.62 110.11 

Salicylic acid Sigma -2.20 138.12 

Testosterone Sigma -3.40 288.42 

Thiourea Merck -4.02 76.12 

Thymol Sigma -1.28 150.22 

Triamcinolone Sigma -5.40 394.43 

Triamcinolone acetonide Sigma-Aldrich -4.69 434.50 

β-Estradiol Sigma -2.37 272.38 

β-Naphthol Merck -1.55 144.17 

 

5.2. Materials 

5.2.1. Experimental conditions 

The analyses were performed on an Acquity Ultra Performance Convergence 

Chromatography (UPC²) from Waters (Milford, Massachusetts, USA), consisting of a binary 

solvent delivery pump, autosampler with a loop of 10 µL, a convergence manager, an 

external Acquity column oven without active pre-heating, a PDA detector and a back-

pressure regulator.  

The four stationary phases selected for these experiments were Luna NH2 (100 mm x 4.6 

mm i.d., 3 µm, Phenomenex, Utrecht, The Netherlands), Luna HILIC (100 mm x 4.6 mm 

i.d., 3 µm, Phenomenex), Synergi Polar RP (100 mm x 4.6 mm i.d., 4µm, Phenomenex) 

and Acquity UPC² BEH (100 mm x 3 mm i.d., 1.7 µm, Waters). This selection was based 

on a previous study (49) in which a dissimilar set of SFC columns was determined. 

An injection volume of 10 µL, a flow rate of 3.0 mL/min and a backpressure of 150 bar 

were applied. For the BEH column an injection volume of 2 µL and a flow rate of 1.5 mL/min 

were used, because of the sub-2µm particles. The temperature of the column was set to 

25°C and the autosampler temperature to 10°C. The wavelength used for UV detection 

was 220 nm and the dead time was marked by the first baseline disturbance after injection 

of a blank (methanol).  

The mobile phase consisted of CO2 quality 4.5 (Messer, Sint-Pieters-Leeuw, Belgium, purity 

≥ 99.995%) to which methanol (HPLC grade, VWR international) was added as organic 

modifier. The fraction of modifier depended on the results of the gradient test. For the 

weak and strong wash, methanol and isopropyl alcohol (VWR international, HPLC grade) 

were used, respectively.  

5.3. Methods 

5.3.1. General Gradient 
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A gradient run was performed to determine the best fraction of modifier in the isocratic 

mobile phase. Nine compounds of the test set were selected covering the log P range (low, 

intermediate and high log P values). They were eluted applying a gradient of methanol, 

varying from 5% up to 40% in a time period of 10 min. The 40% fraction was kept for 5 

min, then that the fraction was brought back to 5% within 0.5 min and held for 2 min to 

recondition the stationary phase (figure 9). 

 
Figure 9: Gradient profile during the gradient test. 

The final  fraction of organic modifier (Ce) where each compound eluted was calculated 

according to equation 6 (50). 

𝐶𝑒 = 𝐶𝑖 + 𝐶𝑓−𝐶𝑖
𝑡𝐺

 𝑥 (𝑡𝑟 − 𝑡𝑑 − 𝑡0)         (eq. 6) 

where Ci and Cf are the fractions of methanol at the beginning and end of the gradient 

respectively. The gradient time is represented by tG (= 10 min), the retention time by tr  

(in minutes) and the system dwell time by td (= 0.058 min). t0 represents the dead time 

(in minutes) which is indicated with a methanol injection.  

After all methanol fractions (Ce) are determined, the average was taken as the fraction of 

methanol used to screen the whole test set of 58 compounds.  

5.3.2. Sample injections 

When the fraction of modifier was determined from the gradient test, all individual 

standards are injected in triplicate. After obtaining the chromatograms, handled by the 

Empower software (Waters) of the SFC instrument, the retention factor (k) for each 

compound was calculated by equation 7: 

𝑘 =  (𝑡𝑟−𝑡0)
𝑡0

          (eq. 7) 

5.3.3. Data analysis 

To build a model for predicting skin permeability, molecular descriptors (theoretical and 

experimental) were used. Both MLR (Multiple linear regression) and PLS (partial least 
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squares regression) modelling were used. The software programs to model the skin 

permeability and calculate the descriptors were Matlab (version r2019b, The Mathworks, 

Natick, Massachusetts, USA), VEGA ZZ (version 3.2.1, Alessandro Pedretti & Giulio Vistoli) 

and E-Dragon (version 1.0, Virtual Computational Chemistry Laboratory). 

First, a set of 29 molecular descriptors was generated using Vega ZZ (by importing data 

from PubChem, Bethesda, Maryland, USA). Log k data, obtained from the SFC 

experiments, were added as an experimental descriptor. The log Kp values for almost all 

compounds were extracted from a fully validated database (51) and have been measured 

in vitro through human skin. The coefficients had to meet multiple conclusion criteria: 1) 

the experiment was performed between 20-40°C, 2) the fraction of nonionized molecule 

must be higher than 10%, 3) the measurements had to be executed by a steady state flux, 

4) the donor- and receptor fluids should not affect or damage the skin (more than water) 

and, 5) a decent log P must represent the measured compound. Some log Kp values were 

extracted from other studies, such as for acetylsalicylic acid (52), haloperidol (53), 

lidocaine (54) and thiourea (55). All these studies used in-vitro permeation techniques, 

involving human skin, to obtain the log Kp data. 

The correlation between all descriptors was checked and if r > 0.1 with log Kp, models with 

one up to seven variables were build using automatic linear regression in Vega ZZ. If r < 

0.1, log k was not automatically taken into account and thus was added manually for linear 

regression in Vega ZZ. To ensure that two variables do not contain the same information, 

the variance inflation factor (VIF) is determined by equation 8 (56). Generally, a VIF value 

above 5 might indicate collinearity and thus two independent variables contain the same 

information. Obviously, these two variables cannot be included in the same model. The 

variable with the highest correlation to log Kp is kept and the other discarded. 

 𝑉𝐼𝐹 =  1
1−𝑟²

             (eq. 8) 

The RMSECV (root mean squared error of cross validation, using leave-one-out CV) and 

RMSEC (root mean squared error of calibration) were determined for each model. The 

RMSEC will decrease the more variables are added. The RMSECV decreases when more 

variables are added to the model, but can increase when too many variables are added 

(caused by overfitting of the model). Thus, the best model is a compromise between a 

good RMSEC (the best fit) and a low RMSECV (prediction properties). r² (determination 

coefficient) of the regression curve indicates the fitting of the model. 

Stepwise MLR was performed using Matlab. Here, the correlation (r) between variables is 

evaluated; when a correlation coefficient above 0.95 between two variables is observed, 

the descriptor with the lowest correlation to log Kp is discarded. The difference with simple 

MLR lies in the fact that stepwise MLR adds, evaluates and possibly eliminates independent 
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variables one by one instead of adding and evaluating all at once. This stepwise evaluation 

of variables is done by an F-test (57). These models are evaluated with cross-validation 

(RMSECV), r² and RMSEC, as for MLR models. 

PLS models are built with set of new latent variables, called PLS factors, which are 

combinations of the original variables, and represent new variables in the data space. An 

optimal number of PLS factors was determined again by cross-validation: the model with 

the lowest RMSECV and a low number of factors (least complex) was chosen. A regression 

coefficient was also determined for each individual original variable, which says something 

about its influence on the model.  

After building PLS and MLR models for log Kp based on the 27 Vega ZZ descriptors 

supplemented with measured data for log k and melting point data (extracted from 

PubChem), modelling was also done for a larger set of molecular descriptors generated by 

E-dragon (1666 descriptors, of which 408 remained after deletion of the (almost) constant 

and the highly correlated descriptors) supplemented with log k for each column. 
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6. Results and discussion 

6.1. Empirical models 

First, models based on theoretical descriptors (so without a chromatographic descriptor) 

were built. This was useful to compare with the ones taking into account retention on given 

stationary phases (discussed in the next sections). In this way, it was determined whether 

the addition of a chromatographic descriptor (log k) has of an added value for the models. 

The best models built using MLR techniques are given in table 2. Equation 9 describes an 

MLR model with Vega ZZ descriptors containing three variables, melting point, virtual log 

P and gyration radius. It has a relatively low accuracy (indicated by the standard error, 

determination coefficient and RMSEC). The predictive power of this model is also quite low 

according to the RMSECV. All generated MLR Vega models can be found in table A1 

(appendix).  

When stepwise MLR modelling was performed, two sets of molecular descriptors were 

used; one containing Vega ZZ descriptors, another E-dragon descriptors. Both best models 

are also presented in table 2. 

Table 2: Best empirical automatic MLR with VEGA ZZ and stepwise MLR models (n = 58) 

Equation r² SE RMSEC RMSECV Equation (log Kp = …) 

Eq. 9 0.68 0.732 0.706 0.758 -1.61 - 0.0036 Melting point + 0.64 Virtual 
log P - 0.61 Gyration radius  

Stepwise MLR 
Eq. 10 0.68 0.730 0.704 0.757 -2.46 - 0.04 Atoms + 0.68 Geometry center 

(1) + 0.60 Virtual log P  
Eq. 11 0.91 0.420 0.378 0.452 -7.64 -0.01 D/Dr06 - 0.001 SRW09 + 1.63 

BEHm1 + 5.95 JGI4 -0.34 RDF020e + 0.26 
RDF055p + 0.73 Mor26u + 0.72 Mor32e -
1.20 G1u + 0.77 C-025  

 

The model containing Vega ZZ descriptors (eq. 10) consists of three variables: atoms, 

geometry center 1 and virtual log P. This model does not differ much from the MLR model 

(eq. 9) in terms of predictability and accuracy. The model containing E-dragon descriptors 

(eq. 11) consists of ten variables: D/Dr06, SRW09, BEHm1, JGI4, RDF020e, RDF055p, 

Mor26u, Mor32e, G1u and C-025. This one is considered superior to the one based on Vega 

ZZ descriptors because of a higher accuracy and predictive power. For the latter model, 

more potential theoretical molecular descriptors were taken into account (408 versus 29). 

In general, the more variables added to the model, the better the fit. Additionally, the 

predictive properties also need to be evaluated.  
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PLS regression models were also built using the same two sets of molecular descriptors 

(table 3).  

Table 3: Best theoretical PLS models (n = 58) 

Number 
PLS 
factors 

Factors with a high regression coefficient: r² RMSEC RMSECV  

3 (Vega 
ZZ) 

Virtual log P and PSA-based HLB 0.63 0.757 0.832 

6 (E-
dragon) 

TPSA(Tot), PCD, Mor02e, D/Dr09, QXXm and RDF035e 0.72 0.674 0.860 

 

When the Vega ZZ descriptors were used, a model containing three PLS factors was built. 

The molecular descriptors that have most influence on the model are virtual log P and PSA-

based HLB. When E-dragon descriptors were used, a model consisting of six PLS factors 

was built in which the descriptors with the largest influence on the response are TPSA(Tot), 

PCD, Mor02e, D/Dr09, QXXm and RDF035e. When compared, the model based on E-dragon 

descriptors had a better fit over the model based on Vega ZZ descriptors, but the predictive 

power was similar (RMSECV). Since models with a low complexity are preferred, the model 

with Vega ZZ descriptors might be a better choice.  

Overall, the PLS regression models were found inferior compared to the MLR models 

because of a higher value for RMSECV. The best model built with theoretical descriptors 

was the stepwise MLR model based on E-dragon descriptors (eq. 11). 

6.2. Gradient screening 

To determine which fraction of methanol should be used to obtain optimal retention times, 

a gradient screening was performed on each stationary phase. This screening was executed 

by varying the methanol fraction from 5% to 20% for the NH2 and the HILIC column, from 

5% to 35% for the BEH column and from 5% to 40% for the phenyl column. The upper 

limits of the methanol fraction differ because some columns were not able to handle a high 

system pressure and a higher modifier fraction means a higher viscosity of the mobile 

phase, resulting in an increased system pressure.  

The retention times with associated methanol fractions (Ce, calculated according to eq. 6) 

of each compound in the test set are given in table 4. The system dwell time (td) equaled 

0.058 min. The final fraction of organic modifier used  to screen the test set was defines 

as 10% methanol for the four stationary phases. 
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Table 4: Retention times and associated methanol fractions (Ce) from the gradient 

screening on the four stationary phases 

 Stationary phases  

 NH2 HILIC Phenyl BEH 

Compound Rt 

(min) 

Ce 

(%) 

Rt 

(min) 

Ce 

(%) 

Rt 

(min) 

Ce 

(%) 

Rt 

(min) 

Ce 

(%) 

Testosterone 1.83 7.0 1.57 6.6 2.26 11.2 1.36 7.7 

Estriol 9.11 17.9 7.26 15.1 2.52 12.1 3.15 13.1 

Corticosterone 3.67 9.8 2.75 8.4 2.75 12.9 1.89 9.2 

Benzoic acid 3.44 9.4 0.92 5.6 0.64 5.5 0.63 5.5 

Acetylsalicylic acid 7.19 15.0 1.13 5.9 0.71 5.8 0.78 5.9 

Barbital 1.52 6.5 1.34 6.2 0.62 5.4 0.62 5.5 

Caffein 0.71 5.3 0.82 5.5 1.49 8.5 0.88 6.2 

Diclofenac 9.68 18.8 1.58 6.6 1.24 7.6 0.85 6.1 

β-estradiol 5.74 12.9 4.33 10.7 2.34 11.5 2.02 9.7 

Average Ce (%) 11.4 7.8 8.9 7.6 

t0 (min) 0.45 0.45 0.43 0.41 

 

6.3. HILIC column 

6.3.1. Screening of the test set 

The retention factors on the HILIC column were in the range [0.13; 113.33]. All retention 

times and factors can be found in table A2 (appendix). Compounds that elute early are 

ethyl nicotinate, methyl nicotinate and progesterone. Compounds that elute rather late are 

chlorpheniramine maleate, haloperidol and estriol. The dead time for this column is 0.413 

min. No signal was obtained for ephedrine and p-phenylenediamine, while haloperidol 

required multiple injections with higher concentrations due to a weak signal; the results of 

0.1 mg/mL was used in modelling. When log k is plotted against log Kp (figure 10), r of the 

regression curve (dotted line) equals -0.615 and shows a fairly good correlation knowing 

that molecular descriptors were not added at this point. 
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Figure 10: The correlation between log k and log Kp for the HILIC column, together with 

the regression line (dotted line) 

6.3.2. Modelling the skin permeability 

In this section, only the best models are given. An overview of all models built for the 

HILIC stationary phase can be found in the appendix table A4. 

Table 5 shows the best model built using the MLR modelling. This model (eq. 12), 56 

compounds are taken into account. The equation includes four different variables 

(molecular descriptors), namely virtual log P, log kHILIC , atoms and lipole (Broto). To 

evaluate whether the experimentally obtained data (log kHILIC) provides added value, this 

model is compared to the best one based on only theoretical descriptors (table 2). The 

determination coefficient, the standard error and the RMSEC indicate that the model 

including log k data from the HILIC stationary phase (eq. 12) is superior and better fitted 

for modelling skin permeability. The RMSECV shows also a better predictive power for the 

HILIC model than for the empirical one. 
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Table 5: Best automatic MLR with VEGA ZZ and stepwise MLR models for the HILIC 
column (n = 58) 

Eq. X r² SE RMSEC RMSECV Equation (logKp = ….) 

Eq. 12 0.81 0.581 0.555 0.607 -2.75 + 0.49 Virtual log P - 0.93 Log kHILIC - 0.029 
Atoms + 0.15 Lipole (Broto)  

Stepwise MLR 
Eq. 13 0.82 0.559 0.529 0.602 -2.79 – 0.93 Log kHILIC – 0.028 Atoms + 13.33 Mass 

center (3) + 0.16 Lipole (Broto)+ 0.48 Virtual log P  

Eq. 14 0.94 0.343 0.307 0.368 -1.22 -1.02 Log kHILIC + 0.61 Jhetp -0.82 EEig01r + 
9.55 JGI4 + 0.055 G(N..N) + 0.48 Mor13m - 1.38 
HATS2u + 63.30 R8v+ + 0.46 C-025 + 0.19 
ALOGPS_logP  

 

When stepwise MLR was performed (table 5), two sets of molecular descriptors were used, 

both including experimental log k data. 

The model based on the E-dragon descriptors (eq. 14) is more accurate to predict skin 

permeability in comparison to the one based on Vega ZZ descriptors (eq. 13), but it is also 

more complex (ten variables in comparison to five). Log kHILIC is included in both models. 

A list of the selected E-dragon descriptors with their definition and classification is listed in 

the appendix (table A3). When both models were compared to those based on only 

theoretical descriptors (eqs. 10 - 11), the model with the HILIC retention shows a higher 

predictive power considering the RMSECV. When compared to the previous MLR model (eq. 

12), equation 13 is a less useful model, because the predictive power is nearly the same, 

while it is more complex (five variables versus four). 

The best models built using PLS regression are presented in table 6. Two sets of molecular 

descriptors were again used, both including experimental log k data. 

Table 6: Best PLS models for HILIC stationary phase (n = 56) 

Number PLS 
factors 

Factors with a high regression coefficient: r² RMSEC RMSECV  

5 (Vega ZZ) Virtual log P and PSA-based HLB 0.69 0.749 0.803 
6 (E-dragon) TPSA(Tot), PCD, D/Dr09, Mor02e, QXXm, RDF035e  0.73 0.674 0.877 

 

When the Vega ZZ descriptors were used, a model containing five PLS factors was built. 

The molecular descriptors that have the most influence on the model are virtual log P and 

PSA-based HLB. When E-dragon descriptors were used, a model with six PLS factors was 

built in which the descriptors with the most influence on the response are TPSA(Tot), PCD, 

D/Dr09, Mor02e, QXXm, RDF035e. When compared to the previous models (table 3), it is 
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seen that log kHILIC had no added value in these models, resulting in similar predictive 

power and accuracy.  

Overall, the PLS model can be regarded as the model with the least predictive power. The 

determination coefficient, RMSEC and RMSECV of these models suggest that they are less 

accurate for skin permeability than those obtained by Vega MLR or stepwise MLR modelling. 

The stepwise MLR model (based on E-dragon descriptors, table 5) is considered the best 

because of its low RMSEC and RMSECV. The determination coefficient for the regression 

curve between the predicted and the in-vitro measured log Kp is given in figure 11 and 

shows a good fit for in sample data. 

 
Figure 11: The relation between predicted log Kp for the HILIC stationary phase and in-

vitro measured log Kp (n = 56) 

6.4. Amino (NH2) column 

6.4.1. Screening of the test set 

The retention factors for the NH2 column range between [0.17; 66.46]. In table A2 

(appendix) all retention times and factors can be found. Compounds that elute early are 

ethyl nicotinate, methyl nicotinate and caffeine. Final eluting compounds are diclofenac, 

triamcinolone and estriol. The dead time for this column equals 0.381 minutes. No signal 

was obtained for salicylic acid, resulting in excluding this compound when modelling. 

Piroxicam, p-phenylenediamine, atropine and ephedrine required multiple injections with 

higher concentrations due to a weak signal; the results of 1 mg/mL have been used for 

modelling, except for piroxicam, where the result of 0.1 mg/mL was selected. The 

correlation between log k and log Kp is given in figure 12 and is very poor; r of the 

regression curve equals 0.225 which is considered low and results in data spread like a 

cloud. 
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Figure 12: Correlation between log k and log Kp for the NH2 column, together with the 

regression line (dotted line) 

6.4.2. Models 

Models were built using MLR, stepwise MLR and PLS regression with 57 compounds taken 

into account. Because the correlation coefficient between log k and log Kp was below 0.1 

(figure 12), MLR models including log k were not automatically generated with the 

automatic linear regression module in Vega ZZ. Log k was manually added to each found 

MLR model where log k was not part of the model (going from one up to seven variables, 

table A5) and evaluated. Because the HILIC MLR models gave good results (table A4), the 

same selected Vega ZZ descriptors were also tested combined with the log kNH2 (table A5). 

The best model was selected and presented in table 7 (eq. 15). This model, made in 

analogy with the HILIC MLR model, described three variables; log kNH2, atoms and virtual 

log P. As can be seen, the addition of log kNH2 compared to a empirical MLR model (eq. 9) 

does not make a large difference. 

Table 7: Best MLR and stepwise MLR models for the NH2 stationary phase (n = 57) 

Eq. X r² SE RMSEC RMSECV Equation (log Kp = ….) 

Eq. 15 0.67 0.753 0.726 0.774 -2,40 – 0,25 log kNH2 – 0,041 Atoms + 0,60 Virtual log P  

    Stepwise MLR    
Eq. 16 0.68 0.732 0.706 0.759 -2.51 -0.043 Atoms + 0.71 Geometry center (1) + 0.61 

Virtual log P  

Eq. 17 0.90 0.427 0.388 0.457 -7.62 - 0.34 log kNH2 - 0.0075 D/Dr06 - 0.0010 SRW09 - 
0.48 MATS4e + 1.65 BEHm1 - 0.32 RDF020e + 0.25 
RDF055p - 0.90 G1u + 0.80 C-025  
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Table 7 also presents models built using stepwise MLR: two sets of molecular descriptors 

were used, both including log kNH2 data from the experiments. 

The model based on Vega ZZ descriptors (eq. 16) solely exists of theoretical descriptors 

and obviously gave the same accuracy and predictive power as the empirical stepwise MLR 

model (eq. 10). When this model (eq.16) is compared to the previously discussed MLR 

model (eq. 15), it can also be concluded that log kNH2 data does not improve modelling for 

skin permeability. 

Only the stepwise MLR model based on E-dragon descriptors (eq. 17) includes log kNH2 

data. This model consists of nine variables; log kNH2, D/Dr06, SRW09, MATS4e, BEHm1, 

RDF020e, RDF055p, G1u and C-025. A definition of the selected E-dragon descriptors can 

be consulted in the appendix (table A3). When this model is compared to the empirical 

model obtained by stepwise MLR (eq. 11), the added chromatographic descriptor log kNH2 

seems to be of no added value to the model. When compared to the MLR model (eq. 15), 

a greater accuracy is observed due to a larger number of molecular descriptors taken into 

account, but also a greater predictive power is obtained.  

Models built using PLS regression are presented in table 8. Two different sets of molecular 

descriptors were used, both including log kNH2 data from the experiments. 

Table 8: Best PLS models for NH2 stationary phase (n = 57) 

Number PLS 
factors 

Factors with a high regression coefficient: r² RMSEC RMSECV  

5 (Vega ZZ) Virtual log P and PSA-based HLB 0.63 0.761 0.828 
6 (E-dragon) TPSA(Tot), PCD, Mor02e, D/Dr09, QXXm and 

RDF035e  
0.69 0.679 0.867 

 

When E-dragon descriptors are used, a model consisting of six PLS factors was built in 

which the descriptors with the biggest influence on the model are TPSA(Tot), PCD, Mor02e, 

D/Dr09, QXXm and RDF035e. By using Vega ZZ descriptors, a model containing five PLS 

factors was generated for the NH2 stationary phase. The molecular descriptors causing the 

largest influence on the model are virtual log P and PSA-based HLB. Log k does not have 

a major influence on the modelling of the skin permeability. As can be seen, factors with a 

large influence on the model are the same for the empirical models (table 3) as well as the 

RMSEC, RMSECV and the r². This means that the addition of log kNH2 is not causing any 

influence on the PLS model. 

The determination coefficient of the relationship between the predicted log Kp for the best 

model and in-vitro measured log Kp (figure 13) seems like a good fit at first sight. However, 
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because this is the same determination coefficient (and with even a slightly lower value) 

as for the best empirical model (eq. 11), this model can be considered useless. 

 

 

Figure 13: The relation between predicted log Kp for the NH2 stationary phase and in-vitro 

measured log Kp (n = 57) 

Overall, this stationary phase does not represent skin permeability well, even when 

multiple descriptors were added. The results of all three types of modelling are comparable 

to the models including only empirical models, suggesting log kNH2 does not offer any added 

value to modelling skin permeability. This NH2 stationary phase is considered not being 

suitable to measure of skin permeability. 

6.5. Phenyl column 

6.5.1. Screening of the test set 

All 58 compounds gave a notable signal that can be used for modelling. The retention 

factors for the phenyl column lay between the range [0.404; 14.144] and the dead time 

for this column was 0.395 minutes. Table A2 (appendix) shows all retention times and 

factors. First-eluting substances were barbital, amylobarbital and phenol. Compounds that 

elute late are chlorpheniramine maleate, atropine and haloperidol. P-phenylenediamine, 

haloperidol, ephedrine and atropine required multiple injections with intermediate 

concentrations due to a weak signal. For p-phenylenediamine and ephedrine, the results 

of  1 mg/mL were selected for modelling. The result of 0.75 mg/mL atropine was taken 

into account and for haloperidol the result of 0.5 mg/mL. Log k was plotted against log Kp 

(figure 14), and the correlation coefficient of the regression line gave a value of 0.614, 

which indicates a fairly good correlation between these 2 variables. 
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Figure 14: Correlation between log k and log Kp for the phenyl column, together with the 

regression line (dotted line)  

6.5.2. Models 

The best models generated using the MLR modelling technique are shown in table 9. In 

this model, 58 compounds are taken into account. The model itself includes three different 

variables: melting point, log kphenyl and virtual log P. This model is compared to the best 

one (based on only theoretical descriptors (table 2)) to evaluate whether the 

experimentally obtained data (log kphenyl) is an addition to an empirical equation. The 

determination coefficient, the standard error and the RMSEC indicate that the model 

including log kphenyl data from the phenyl stationary phase (eq. 18) is superior and more 

fitted for modelling skin permeability with a smaller error. Above that, the RMSECV equals 

a lower value, meaning that the MLR model for the phenyl column is better at predicting 

skin permeability than the empirical MLR model. 
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Table 9: Best MLR and stepwise MLR models for the phenyl stationary phase (n = 58) 

Eq. X r² SE RMSEC RMSECV Equation (log Kp = ….) 

Eq. 18 0.75 0.647 0.625 0.681 -3.12 – 0.0029 Melting point + 0.55 Virtual log P – 1.59 
Log kphenyl  

Stepwise MLR 
Eq. 19 0.73 0.663 0.645 0.686 -3.56 - 1.91 Log kphenyl + 0.60 Virtual log P  

Eq. 20 0.98 0.207 0.167 0.238 -3.82 -1.79 Log kphenyl -1.07 nBnz + 0.22 S3K -0.022 
D/Dr06 -0.00059 SRW09 + 1.07 MATS1m + 0.78 EEig13x 
+ 15.48 JGI4 + 23.51 JGI7 -0.034 G(O..O) -0.13 RDF020e 
+ 0.076 RDF090e -0.26 Mor09e -0.83 Mor20e + 0.41 
H1m + 0.25 nCconj + 0.74 C-025 + 0.24 H-047 -0.80 
ALOGPS_logS  

 

When the stepwise MLR approach is performed, two different sets of molecular descriptors 

were used, both including log kphenyl data from the experiments. The best models are given 

in table 9.  

A model of only two variables (eq. 19) can be obtained when the set with Vega ZZ 

descriptors (including the chromatographic descriptor log kphenyl) is applied: log kphenyl and 

virtual log P. This model is a lot less complex than the one based on E-dragon descriptors. 

The latter contains 19 variables, namely Log kphenyl, nBnz, S3K, D/Dr06, SRW09, MATS1m, 

EEig13x, JGI4, JGI7, G(O..O), RDF020e, Mor09e, Mor20e, H1m, nCconj, C-025, H-047 and 

ALOGPS_logS. This one possesses a great predictive power according to the RMSECV and 

an almost perfect fit indicated by r², SE and RMSEC. When both models were compared to 

the empirical stepwise MLR ones, there is a clear improvement for predictability (regarding 

RMSECV) and in accuracy (regarding r², SE and RMSEC) for the ones including log kphenyl 

data (table 9). The appendix provides a list of the selected E-dragon descriptors with their 

associated definition (table A3). 

Models built using PLS regression are presented in table 10. Two sets of molecular 

descriptors were used, both including log k data from the experiments. 

Table 10: Best PLS models for the phenyl stationary phase (n = 58) 

Number PLS 
factors 

Factors with a high regression coefficient: r² RMSEC RMSECV  

5 (Vega ZZ) Virtual log P and PSA-based HLB 0,63 0.755 0.824 
6 (E-dragon) TPSA(Tot), PCD, Mor02e, D/Dr09, QXXm and RDF035e 0,72 0.674 0.860 

 

A model containing five PLS factors can be built when relying on Vega ZZ descriptors 
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including the chromatographic descriptor log kphenyl (table 10). The molecular with the 

biggest influence on the model are virtual log P and PSA-based HLB. Another PLS regression 

model can be built containing six factors, using the E-dragon descriptors including log kphenyl 

(table 10). The PLS factors with biggest influence here are TPSA(Tot), PCD, Mor02e, 

D/Dr09, QXXm and RDF035e. Overall, log kphenyl does not seem to have a big influence on 

these models and can be determined by comparing these models to empirical models (table 

3); the determination coefficient and the RMSECV of the latter are equal to the obtained 

PLS regression models including log kphenyl. When compared to MLR and stepwise MLR 

modelling, the determination coefficient and the RMSECV of these suggest that both 

models are less accurate than those obtained by MLR or stepwise MLR modelling (table 9). 

The best model for predicting skin permeability is considered the stepwise MLR model (with 

E-dragon descriptors, eq. 20). The predicted log Kp for the column is plotted against log Kp 

data of in-vitro measurements and a regression line was set up (figure 15). This model is 

a really good fit for in sample data because the determination coefficient shows high 

correlation. It also has a great predictive power according to the low RMSECV.  

 
Figure 15: The relation between predicted log Kp for the best model of the phenyl 

stationary phase and in-vitro measured log Kp (n = 58) 

The stepwise MLR model based on Vega ZZ descriptors (eq. 19) is also useful. Although it 

has a higher RMSECV over the MLR model (eq. 18), it contains 1 variable less (which comes 

down to the use of only two variables), which make this an interesting approach. 

6.6. BEH column 

6.6.1. Screening of the test set 

Table A2 (appendix) shows all retention factors and times; all retention factors for the BEH 

column were in the range [0.134; 25.827]. Early eluting compounds are ethyl nicotinate, 
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methyl nicotinate and ibuprofen. Substances that elute last are haloperidol, p-

phenylenediamine and piroxicam. P-phenylenediamine, piroxicam and haloperidol gave a 

bad signal and thus multiple injections with higher concentrations were required; the 

results of 1 mg/mL were chosen to model with. The dead time for this column equals 0.380 

minutes and no signal was obtained for atropine, chlorpheniramine maleate and ephedrine, 

leading to their omission from the model. The correlation between log k and log Kp is given 

in figure 16, r of the regression curve (dotted line) equals 0.605, which is a fairly good fit.  

 

Figure 16: Correlation between log k and log Kp for the BEH column, together with the 

regression line (dotted line) 

6.6.2. Models 

The best model (eq. 21) built using the MLR modelling method is presented in table 11. 

This model includes 3 different variables (molecular descriptors) namely virtual log P, log 

kphenyl and atoms. When compared to an empirical model (eq. 9), the RMSEC, r² and SE of 

the BEH MLR model show a better fit in modelling skin permeability. This suggests that the 

added chromatographic descriptor, log kBEH, is an added value to an empirical model. The 

RMSECV of this model is also considered better than the one from the empirical model, 

meaning that the MLR model for the BEH column (eq. 21) has a greater predictive power. 
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Table 11: : Best MLR and stepwise MLR models for the BEH stationary phase (n = 55) 

Eq. X r² SE RMSEC RMSECV Equation (log Kp = ….) 

Eq. 21 0.76 0.625 0.602 0.654 -2.86 + 0.56 Virtual log P - 0.87 Log kBEH - 0.029 
Atoms 

Stepwise MLR 
Eq. 22 0.78 0.603 0.575 0.645 -2.88 - 0.90 Log kBEH -0.027 Atoms + 14.00 Mass 

center (3) + 0.55 Virtual log P  

Eq. 23 0.93 0.364 0.326 0.396 -3.47 -1.12 Log kBEH -0.62 MATS8e + 0.19 GATS5m  
- 0.22 RDF020e -1.60 Mor18m + 0.75 Mor08e + 
14.07 H8p -0.26 HATSp + 8.24 R4e+ + 0.41 C-025  

 

Two different sets of molecular descriptors, both including log kBEH data from the 

experiments, were used to generate stepwise MLR models (table 11). 

The model based on the E-dragon descriptors including log kBEH (eq. 23) is more accurate 

to predict skin permeability than the one with Vega ZZ descriptors (eq. 22) but is also 

more complex (ten variables versus four variables). The model based on Vega ZZ 

descriptors (eq. 22) includes three variables: virtual log P, log kBEH and atoms. When E-

dragon were used, the obtained model (eq. 23) contains ten variables; log kBEH, MATS8e, 

GATS5m, RDF020e, Mor18m, Mor08e, H8p, HATSp, R4e and C-025. A list of selected E-

dragon descriptors and accompanying definitions is provided in the appendix (table A3). 

Both models came out as superior when they were compared to the stepwise MLR models 

based on theoretical descriptors (table 2) due to a greater predictive power (RMSECV) and 

fit (r², RMSEC, SE). This again confirms that log kBEH is an added value to the model. The 

same was concluded when compared to the previous obtained MLR model (eq. 21). 

Models built using PLS regression are presented in table 12. Two different sets of molecular 

descriptors were used, both including log kBEH data from the experiments. 

Table 12: : Best PLS models for the BEH stationary phase (n = 55) 

Number PLS 
factors 

Factors with a high regression coefficient: r² RMSEC RMSECV  

5 (Vega ZZ) Virtual log P and PSA-based HLB 0.65 0.730 0.766 
6 (E-dragon) TPSA(Tot), QXXm, PCD, RDF035e, Mor02e 0.73 0.654 0.916 

 

The first PLS model contains 5 PLS factors and is based on the set of Vega ZZ descriptors. 

The molecular descriptors with the biggest influence on the model are virtual log P and 

PSA-based HLB. When the E-dragon descriptors are taken into account, another PLS model 

could be built, consisting of 6 PLS factors, in which the descriptors with the biggest 
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influence on the model are TPSA(Tot), QXXm, PCD, RDF035e, Mor02e. Again, log kBEH does 

not seem to have a big influence on the final PLS models and the determination coefficient, 

RMSEC and RMSECV of these PLS models indicate that these are less accurate for skin 

permeability than those obtained by MLR or stepwise MLR modelling (table 11). When 

compared to the empirical PLS models (table 3), they seem to possess almost the same 

predictive power and accuracy as the empirical ones. 

The stepwise MLR model based on E-dragon descriptors (eq. 23) turned out to be the best 

one to predict skin permeability for the BEH stationary phase, due to its high r² and low 

RMSEC, RMSECV. The correlation between the predicted values for log Kp and the log Kp 

data from in-vitro measurements in the literature (51) were given by the regression curve 

in figure 17. The determination coefficient shows a high correlation meaning that this model 

(eq. 22) is a good fit for in sample data.  

 
Figure 17: The relation between predicted log Kp for the best model of the BEH stationary 

phase and in-vitro measured log Kp (n = 55) 

6.7. Comparison of the four different stationary phases 

To decide which stationary phase is the best option for modelling skin permeability, the 

four stepwise MLR models based on E-dragon descriptors are compared to each other since 

this type of modelling gave the best results.  

The model with the lowest RMSECV is selected because this suggests the best approach 

for out of sample data, while r² and the RMSEC are only useful for in-sample data and only 

gives an estimation of the accuracy of the model. Therefore, the best predictive model is 

the stepwise MLR model for the phenyl stationary phase based on E-dragon descriptors 

(eq. 20). With an RMSECV of 0.238 and an r² of 0.98, this is a nearly perfect model to 

R² = 0,9305
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predict skin permeability. A disadvantage of this model is the large number of variables (= 

19) and thus the complexity.   

If a simpler model is desired, a compromise could be the MLR model of the HILIC column 

(eq. 12). This model contains only four variables and has a RMSECV of 0.607 (note that 

this is still three times the magnitude of the RMSECV of equation 20). Although there is a 

stepwise MLR model with a slightly lower RMSECV for this stationary phase (eq. 13), the 

difference is too small to be held against one more variable. Another interesting approach 

is the use of the stepwise MLR model based on Vega ZZ descriptors of the phenyl stationary 

phase (eq. 19) where only two variables are present with an RMSECV of 0.686. 

Stepwise MLR gave the best results for modelling skin permeability for each stationary 

phase so it is only logical to choose the best column based on these models. In conclusion, 

the phenyl stationary phase gave the best (based on E-dragon descriptors) and the 

simplest (based on Vega ZZ descriptors) approach to predict skin permeability when 

modelled with stepwise MLR. 

When the obtained data for log k of each stationary phase is compared to each other (figure 

18), some interesting trends can be observed. When trying to draw a calibration line, some 

datapoints exceed the expected value. This is the case for chlorpheniramine maleate, 

haloperidol, atropine and piroxicam. It is no coincidence that these are some of the 

compounds that gave difficulties when measuring; they did not generate (a good) signal 

or the peak shape was not at all Gaussian. On the other hand, ethyl nicotinate and methyl 

nicotinate can easily be distinguished on the graphs, because they both have a very small 

log k due to low retention times. This is probably due to the fairly non-polar properties of 

these two substances and all four stationary phases are used to separate polar or highly 

polar compounds. Another finding while plotting log k data of different stationary phases 

to each other, is that the data obtained by the BEH and HILIC column are very much alike. 

This is determined by the correlation coefficient of the calibration curve, with a value for r 

of 0.870 (table 13). The inverse can also be concluded for the NH2 and the phenyl column, 

with an r of 0.279 (table 13). 

Table 13: The correlation coefficient (r) when log k of each column is plotted against log 

k from another column 

Correlation (r) Amino HILIC Phenyl BEH 

Amino 1 0.614 0.279 0.530 

HILIC 0.614 1 0.674 0.870 

Phenyl 0.279 0.674 1 0.689 

BEH 0.530 0.870 0.689 1 
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Figure 18: Log k for each stationary phase plotted against all three other stationary phases. 
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7. Conclusion 

The retention times and factors of fifty-eight compounds were measured on four stationary 

phases using SFC. Afterwards, these results were used for modelling for skin permeability. 

Three different types of models were built, namely MLR, stepwise MLR and PLS regression 

for each column and the best for each modelling technique was selected.  

After comparing all models obtained with the different stationary phases, the most suitable 

column to measure skin permeability was chosen. This turned out to be the phenyl column. 

Certain models from the BEH (eq. 23) and the HILIC column (eq. 14) also gave decent 

results in comparison to the best model based on only theoretical molecular descriptors 

(eq. 11), but displayed a lower accuracy and predictive power in comparison to the best 

model from the phenyl column (eq. 20). The NH2 column was not suitable since these 

models (tables 8 and 9) gave no added value to the empirical ones (tables 2 and 3). The 

best approach to model skin permeability turned out to be stepwise MLR modelling for each 

chromatographic descriptor in combination with E-dragon descriptors.  

This research suggests that supercritical fluid chromatography in combination with QSAR 

modelling can be used to respectively measure and model skin permeability as an 

alternative method. This method is considered a fast, easy, cheap, ethically correct and 

ecological method. This alternative testing method cannot measure compounds in 

pharmaceutical formulations or in their salt forms, making it thus only applicable in 

screening tests in the field of toxicology or getting a first idea of the skin permeability of a 

new active pharmaceutical compound. It certainly offers opportunities to the future of skin 

permeability assessments of pharmaceuticals and/or cosmetics. 

For now, the phenyl stationary phase gave the best results but more research needs to be 

performed to find a stationary phase that leans closest to predicting human skin 

permeability. This research was limited to commercially available stationary phases, but 

maybe in the future the packing of SFC columns for this specific application could be looked 

into. Another approach could be to change the mobile phase by adding other types of 

organic modifier or additives in different concentrations in order to further optimize the 

correlation with the skin permeability. 
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8. Abstract 

As the interest in dermal absorption and permeation of medicines rises in the 

pharmaceutical and cosmetic industry, alternatives to animal testing are highly in demand. 

Next to in vitro skin permeation methods, chromatographic techniques can be used. The 

use of supercritical fluid chromatography (SFC) has never been tested for modelling skin 

permeability, although it is a fast, cheap and ethical approach. In this thesis, the skin 

permeability is modelled using the retention obtained in SFC. Four orthogonal stationary 

phases were selected based on previous studies, namely a HILIC, amino, phenyl and BEH 

column. A gradient screening was performed on nine compounds that represent the log P 

range of the test set, to determine the fraction of modifier (methanol) needed in the mobile 

phase to screen the complete test set. This resulted in an average of 10% methanol for all 

stationary phases. Once retention times and retention factors were obtained for all 58 

compounds, models were built using multiple linear regression (MLR) stepwise MLR and 

partial least squares (PLS) regression to predict skin permeability. In order to optimize 

these models, theoretical molecular descriptors were added. These descriptors were 

extracted from Vega ZZ or E-dragon software. Skin permeability coefficients, log Kp, were 

extracted from the literature containing databases from in-vitro experiments on human 

skin. The models obtained with the chromatographic retentions on the different stationary 

phases were compared to select which column gave the best results and predictive power. 

The best model turned out to be a stepwise MLR model containing E-dragon descriptors 

and the chromatographic descriptor from the phenyl column. This model contained 19 

different variables, which makes it very accurate but also complex. It showed a high 

predictive power due to a low RMSECV.  When compared to empirical models, this model 

turned out to be much more accurate and predictive than the empirical model based on E-

dragon descriptors, meaning that these log k data provided an added value to the model. 

This suggests that SFC could be used as an alternative testing method for measuring skin 

permeability. 

 

 

 

 

 

 

 



50 
 

 

9. Samenvatting 

Naarmate de interesse in dermale absorptie en permeatie van geneesmiddelen toeneemt 

in de farmaceutische en cosmetische industrie, is er veel vraag naar alternatieven voor 

dierproeven. Naast in-vitro methoden voor huidpermeatie kunnen chromatografische 

technieken worden gebruikt. Het gebruik van superkritische vloeistofchromatografie (SFC) 

is nooit getest voor het modelleren van de doorlaatbaarheid van de huid, hoewel het een 

snelle, goedkope en ethische benadering is. In deze thesis wordt de doorlaatbaarheid van 

de huid gemodelleerd met behulp van de retentie verkregen door SFC. Op basis van 

eerdere studies werden vier orthogonale stationaire fasen geselecteerd, namelijk een 

HILIC-, amino-, fenyl- en BEH-kolom. Er werd een gradiëntscreening uitgevoerd op negen 

stoffen die de log P-spreiding van de test set vertegenwoordigen om de fractie organisch 

solvent (methanol) te bepalen die nodig is in de mobiele fase voor het meten van de 

volledige test set. Dit resulteerde in een afgerond gemiddelde van 10% methanol voor 

iedere stationaire fase. Deze fractie werd vervolgens gebruikt (isocratisch) en zodra 

retentietijden en retentiefactoren waren verkregen voor alle 58 stoffen in de test set, 

konden modellen gebouwd worden met behulp van multiple linear regression (MLR), 

stepwise MLR en partial least squares (PLS) regressie om de doorlaatbaarheid van de huid 

te voorspellen. Om deze modellen te verbeteren, werden theoretische moleculaire 

descriptoren toegevoegd aan de chromatografische descriptor. Deze descriptoren zijn 

verkregen uit Vega ZZ of E-dragon software. De coëfficiënten voor de doorlaatbaarheid 

van de huid, log Kp, werden uit de literatuur (databanken) gehaald en werden verkregen 

op basis van in-vitro experimenten op de menselijke huid. De verschillende manieren van 

modelleren, verkregen op basis van de resultaten van iedere stationaire fase, werden 

binnen elke stationaire fase met elkaar vergeleken en de beste modellen werden onderling 

tussen de verschillende stationaire fasen vergeleken om te selecteren welke kolom het 

beste resultaat en voorspellend vermogen gaf. Het beste model bleek een stepwise MLR-

model te zijn op basis van E-dragon-descriptoren met de chromatografische descriptor van 

de fenyl kolom. Dit model bevatte 19 verschillende variabelen, wat het zeer nauwkeurig 

maar ook complex maakt. Het bezit een hoog voorspellend vermogen dankzij een lage 

RMSECV. In vergelijking met uitsluitend theoretische modellen bleek dit model veel 

nauwkeuriger en beter voorspellend te zijn dan het theoretische model op basis van E-

dragon-descriptoren, wat betekent dat deze toegevoegde log k-data een meerwaarde zijn 

aan het model. Dit suggereert dat SFC kan worden gebruikt als een alternatieve 

testmethode voor het meten van de doorlaatbaarheid van de huid.  
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APPENDIX  
Table A1: All generated MLR models based on theoretical descriptors from Vega ZZ (n = 58) 

 

Table A2: Retention times and retention factors for 58 compounds (concentration of 0.1 mg/mL, unless mentioned otherwise) measured 
on four stationary phases 

 Stationary phases 

 HILIC (n = 56) Phenyl (n = 58) NH2 (n = 57) BEH (n = 55) 

Compound 
Average Rt 
(minutes) 

k 
 

Average Rt 
(minutes) 

k Average Rt 
(minutes) 

k Average Rt 
(minutes) 

k 

17α-Hydroxyprogesterone 0.871 1.109 1.539 2.896 1.082 1.840 0.664 0.747 
2.4.6-Trichlorophenol 0.724 0.753 0.688 0.743 1.351 2.545 0.500 0.316 
2.4-Dichlorophenol 0.770 0.865 0.638 0.615 1.405 2.687 0.511 0.345 
2-Amino-4-nitrophenol 2.382 4.768 0.912 1.308 14.20 36.28 1.239 2.261 
2-Nitro-p-phenylenediamine 3.521 7.525 1.253 2.171 10.59 26.81 1.244 2.275 
4-Amino-2-nitrophenol 0.988 1.393 0.780 0.975 1.953 4.125 0.616 0.621 
Acetylsalicylic acid 0.801 0.939 0.612 0.549 10.10   25.51 0.578 0.522 

Number of 
independent 
variables 

r² SE RMSEC RMSECV Equation (log Kp = ….) 

1 0.39 0.988 0.971 1.002 -1.26 - 0.011 Melting point 
2 0.66 0.751 0.731 0.768 -1.66 + 0.73 Virtual log P - 0.82 Gyration radius 
3 0.68 0.732 0.706 0.758 -1.61 - 0.0036 Melting point + 0.64 Virtual log P - 0.61 Gyration radius 
4 0.69 0.721 0.734 0.801 -2.26 + 0.42 Virtual log P - 0.040 Atoms + 0.19 Lipole (Broto)  - 0.25 H-bond donor 
5 0.71 0.711 0.691 0.771 -2.54 + 0.49 Virtual log P + 0.0060 Polar area (PSA) - 0.0074 Volume + 0.23 Lipole (Broto)  - 0.44 

H-bond donor 
6 0.73 0.693 0.663 0.764 -2.66 - 0.0041 Melting point + 0.43 Virtual log P - 0.032 Atoms + 0.0076 Polar area (PSA) + 0.26 

Lipole (Broto)  - 0.42 H-bond donor 
7 0.73 0.698 0.660 0.776 -2.78 - 0.0041 Melting point + 0.42 Virtual log P - 0.036 Atoms + 0.0075 Polar area (PSA) + 0.25 

Lipole (Broto)  - 0.42 H-bond donor + 0.054 Appx. Dimensions (3) 
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Aminopyrine 0.741 0.793 1.047 1.651 0.833 1.186 0.887 1.333 
Amylobarbital 0.768 0.860 0.562 0.423 0.853 1.240 0.487 0.282 
Antipyrine 1.044 1.527 2.001 4.065 1.409 2.699 1.466 2.857 

Atropine   
(c = 1 mg/mL) 
47.22 113.3 

(c = 0.75mg/mL) 
4.847 11.27 

(c = 1 mg/mL) 
3.65 8.586 

/ / 

Barbital 0.864 1.093 0.555 0.404 1.013 1.658 0.509 0.339 
Benzoic acid 0.713 0.727 0.576 0.457 4.670 11.26 0.519 0.367 
Benzyl alcohol 0.673 0.630 0.583 0.477 0.796 1.090 0.519 0.365 
Caffeine 0.638 0.544 1.144 1.896 0.579 0.519 0.621 0.635 
Chloroxylenol 0.766 0.855 0.650 0.646 1.190 2.123 0.517 0.361 

Chlorpheniramine (maleate)   
(c = 1 mg/mL) 
21.15 50.20 

(c= 1 mg/mL) 
5.982 

14.14 
1.400 2.675 

/ / 

Cortexolone 1.350 2.269 1.686 3.268 2.149 4.640 0.822 1.163 
Cortexone 0.750 0.817 2.025 4.127 1.076 1.823 0.610 0.604 
Corticosterone 1.516 2.672 2.239 4.668 2.437 5.396 0.953 1.508 
Cortisone 1.587 2.843 1.561 2.952 2.734 6.177 0.928 1.441 
Diclofenac 1.094 1.649 1.005 1.545 25.70 66.46 0.622 0.636 

Ephedrine  / / 
(c = 1 mg/mL) 
0.889 1.251 

(c = 1 mg/mL) 
2.956 6.759 

/ / 

Estriol 7.963 18.28 1.822 3.613 19.30 49.65 2.075 4.461 
Estrone 1.183 1.864 1.550 2.923 2.195 4.761 0.678 0.783 
Flurbiprofen 0.802 0.943 0.775 0.962 6.230 15.35 0.556 0.464 

Haloperidol 10.21 23.73 1.862 3.713 1.794 3.710 
(c = 1mg/mL) 
10.19 25.83 

Hydrocortisone 3.189 6.722 1.801 3.559 4.991 12.10 1.332 2.506 
Ibuprofen 0.600 0.454 0.591 0.495 1.833 3.812 0.482 0.269 
Indomethacin 1.086 1.630 1.238 2.133 13.03 33.19 0.641 0.687 
Ketoprofen 0.908 1.198 0.860 1.177 6.577 16.26 0.622 0.638 
Lidocaine 1.381 2.343 0.823 1.084 0.751 0.971 1.617 3.255 
m-Cresol 0.722 0.747 0.579 0.465 1.125 1.953 0.502 0.322 
Methyl-4-hydroxybenzoate 0.828 1.006 0.638 0.615 1.323 2.472 0.548 0.442 
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m-Nitrophenol 0.836 1.023 0.628 0.591 1.578 3.143 0.532 0.401 
Naproxen 0.932 1.257 0.839 1.123 8.250 20.65 0.583 0.535 
Nicotinate. ethyl 0.468 0.134 0.600 0.518 0.445 0.167 0.448 0.178 
Nicotinate. methyl 0.491 0.190 0.608 0.540 0.468 0.228 0.461 0.214 
o-Chlorophenol 0.718 0.739 0.592 0.499 1.295 2.398 0.490 0.289 
o-Cresol 0.719 0.741 0.586 0.484 1.071 1.811 0.499 0.314 
Paracetamol 3.375 7.172 0.856 1.167 10.32 26.09 1.346 2.543 
p-cresol 0.723 0.751 0.577 0.462 1.074 1.820 0.504 0.326 
Phenobarbitone 1.315 2.183 0.707 0.790 2.037 4.346 0.584 0.536 
Phenol 0.744 0.801 0.571 0.446 1.135 1.980 0.508 0.337 
Piroxicam 1.792 3.338 1.127 1.853 11.19 28.38 3.779 8.945 
p-Nitrophenol 0.905 1.190 0.662 0.676 2.046 4.369 0.555 0.461 

p-phenylenediamine / / 
(c = 1 mg/mL) 
1.482 2.752 

(c = 1 mg/mL) 
14.39 36.77 

(c = 1 mg/mL) 
2.287 5.018 

Prednisolone 3.813 8.232 1.830 3.634 6.416 15.84 1.502 2.954 
Progesterone 0.580 0.404 1.768 3.477 0.668 0.752 0.529 0.392 
Resorcinol 2.579 5.244 0.688 0.742 9.862 24.89 0.803 1.112 
Salicylic acid 1.070 1.592 0.659 0.668 / / 0.963 1.535 
Testosterone 0.941 1.278 1.733 3.388 1.110 1.913 0.770 1.025 
Thiourea 5.184 11.55 0.758 0.918 11.68 29.65 1.203 2.166 
Thymol 0.657 0.591 0.602 0.523 0.874 1.294 0.486 0.279 
Triamcinolone 6.744 15.33 1.702 3.309 16.16 41.40 1.841 3.846 
Triamcinolone acetonide 1.539 2.726 1.436 2.635 2.539 5.663 0.922 1.425 
β-estradiol 2.848 5.897 1.762 3.460 5.388 13.14 1.115 1.933 
β-Naphthol 1.057 1.559 0.780 0.974 2.378 5.241 0.569 0.498 
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Table A3: List of selected E-dragon descriptors 

Descriptor Definition Category 

ALOGPS_logP Log P calculated by the 
ALOGPS application 

Molecular properties 

ALOGPS_logS Log S calculated by the 
ALOGPS application 

Molecular properties 

BEHm1 Highest eigenvalue n. 1 of 
Burden matrix / weighed by 
atomic masses 

Burden eigenvalues 

C-025 R--CR--R Atom-centred fragments 
D/Dr06  distance/detour ring index of 

order 6 
Ring descriptors 

D/Dr09 distance/detour ring index of 
order 9 

Ring descriptors 

EEig01r eigenvalue n. 1 from 
augmented edge adjacency 
mat. weighted by resonance 
integra 

Edge adjacency indices 

EEig13x eigenvalue n. 13 from 
augmented edge adjacency 
mat. weighted by bond order 

Edge adjacency indices 

G(N..N)  sum of geometrical distances 
between N..N 

3D Atom Pairs 

G(O..O) sum of geometrical distances 
between O..O 

3D Atom Pairs 

G1u 1st component symmetry 
directional WHIM index / 
unweighted 

WHIM descriptors 

GATS5m Geary autocorrelation of lag 5 
weighted by mass 

2D autocorrelations 

H-047  H attached to C1(sp3)/C0(sp2) Atom-centred fragments 
H1m H autocorrelation of lag 1 / 

weighted by mass 
GETAWAY descriptors 

H8p H autocorrelation of lag 8 / 
weighted by polarizability 

GETAWAY descriptors 

HATSp leverage-weighted total index 
/ weighted by polarizability 

GETAWAY descriptors 

HATS2u leverage-weighted 
autocorrelation of lag 2 / 
unweighted 

GETAWAY descriptors 

JGI4 mean topological charge index 
of order 4 

2D autocorrelations 

JGI7 mean topological charge index 
of order 7 

2D autocorrelations 

Jhetp 2D matrix-based descriptors Barysz matrix weighted by 
polarizability (Dz(p)) 

MATS1m Moran autocorrelation of lag 1 
weighted by mass 

2D autocorrelation 
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MATS4e Moran autocorrelation of lag 4 
weighted by Sanderson 
electronegativity 

2D autocorrelation 

MATS8e Moran autocorrelation of lag 8 
weighted by Sanderson 
electronegativity 

2D autocorrelation 

Mor02e signal 02 / weighted by 
Sanderson electronegativity 

3D-MoRSE descriptors 

Mor08e signal 08 / weighted by 
Sanderson electronegativity 

3D-MoRSE descriptors 

Mor09e signal 09 / weighted by 
Sanderson electronegativity 

3D-MoRSE descriptors 

Mor20e signal 20 / weighted by 
Sanderson electronegativity 

3D-MoRSE descriptors 

Mor32e signal 32 / weighted by 
Sanderson electronegativity 

3D-MoRSE descriptors 

Mor13m signal 13 / weighted by mass 3D-MoRSE descriptors 
Mor18m signal 18 / weighted by mass 3D-MoRSE descriptors 
Mor26u signal 26 / unweighted 3D-MoRSE descriptors 
nBnz number of benzene-like rings Ring descriptors 
nCconj number of non-aromatic 

conjugated C(sp2) 
Functional group counts 

PCD difference between multiple 
path count and path count 

Walk and path counts 

QXXm quadrupole x-component 
value / weighted by mass 

Geometrical descriptors 

R4e+ R maximal autocorrelation of 
lag 4 / weighted by Sanderson 
electronegativity 

GETAWAY descriptors 
 

R8v R autocorrelation of lag 8 / 
weighted by van der Waals 
volume 

GETAWAY descriptors 
 

RDF020e Radial Distribution Function - 
020 / weighted by Sanderson 
electronegativity 

RDF descriptors 

RDF035e Radial Distribution Function - 
035 / weighted by Sanderson 
electronegativity 

RDF descriptors 

RDF090e Radial Distribution Function - 
090 / weighted by Sanderson 
electronegativity 

RDF descriptors 

RDF055p Radial Distribution Function - 
055 / weighted by 
polarizability 

RDF descriptors 

S3K 3-path Kier alpha-modified 
shape index 

Topological indices 

SRW09 self-returning walk count of 
order 9 

Walk and path counts 

TPSA(Tot) topological polar surface area 
using N,O,S,P polar 
contributions 

Molecular properties 
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Table A4: All generated MLR models for the HILIC stationary phase based on Vega ZZ descriptors (n = 56) 

Number of 
independent 
variables 

r² SE RMSEC RMSECV Equation (log Kp = ….) 

1 0.37 1.015 0.997 1.037 -2.31 - 1.38 Log kHILIC 

2 0.67 0.741 0.721 0.760 -3.40 + 0.56 Virtual log P - 1.24 Log kHILIC 

3 0.79 0.594 0.572 0.615 -2.54 + 0.56 Virtual log P - 0.93 Log kHILIC - 0.031 Atoms 
4 0.81 0.581 0.555 0.607 -2.75 + 0.49 Virtual log P - 0.93 Log kHILIC - 0.029 Atoms + 0.15 Lipole (Broto) 

5 0.81 0.580 0.548 0.615 -2.94 + 0.52 Virtual log P - 0.95 Log kHILIC + 0.10 H-bond acceptor - 0.034 Atoms + 0.17 Lipole 
(Broto) 

6 0.81 0.583 0.546 0.631 -2.90 - 0.0010 Melting point + 0.50 Virtual log P - 0.91 Log kHILIC + 0.11 H-bond acceptor - 0.032 
Atoms + 0.17 Lipole (Broto) 

7 0.81 0.588 0.544 0.651 -2.96 - 0.0013 Melting point + 0.52 Virtual log P - 0.95 Log kHILIC + 0.10 H-bond acceptor - 0.031 
Atoms + 0.056 H-bond donor + 0.16 Lipole (Broto) 

 

Table A5: All generated MLR models for the NH2 stationary phase based on Vega ZZ descriptors (n = 57) 

Number of 
independent 
variables 

r² SE RMSE
C 

RMSECV Equation (log Kp = ….) 

1 0.40 0.992 0.974 1.006 -1.26 - 0.011 Melting point 
2 0.66 0.754 0.734 1.023 -1.70 + 0.74 Virtual log P - 0.81 Gyration radius 
3 0.68 0.732 0.706 0.760 -1.66 - 0.0039 Melting point + 0.64 Virtual log P - 0.59 Gyration radius 

4 0.69 0.726 0.694 0.755 -1.65 - 0.0042 Melting point + 0.71 Virtual log P + 0.15 H-bond acceptor - 0.75 Gyration radius 

5 0.71 0.714 0.676 0.757 -1.66 - 0.0040 Melting point + 0.66 Virtual log P + 0.0058 Polar area (PSA) - 0.32 H-bond donor - 
0.64 Gyration radius 

6 0.73 0.698 0.654 0.759 2.67 - 0.0042 Melting point + 0.43 Virtual log P - 0.031 Atoms + 0.0075 Polar area (PSA) + 0.25 
Lipole (Broto)  - 0.42 H-bond donor 
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7 0.73 0.703 0.652 0.773 -2.79 - 0.0042 Melting point + 0.42 Virtual log P - 0.036 Atoms + 0.0073 Polar area (PSA) + 0.25 
Lipole (Broto)  - 0.41 H-bond donor + 0.055 Appx. Dimensions (3) 

     MLR models (Vega ZZ) incl. log K (manually added) 

Number of 
independent 
variables 

r² RMSEC RMSECV Equation (log Kp = ….) 

1 0.05 1.223 1.262 -2.37 – 0.47 Log kNH2 

2 (NH2 
column 
model)) 

0.40 0.971 1.023 -1.29 + 0.14 Log kNH2 – 0.011 Melting point 

2 (HILIC 
column 
model) 

0.42 0.953 0.998 -3.60 – 0.36 Log kNH2 + 0.62 Virtual log P 

3 (NH2 
column 
model) 

0.66 0.728 0.778 -1.63 – 0.16 Log kNH2 – 0.79 Gyration radius + 0.73 Virtual log P 

3 (HILIC 
column 
model) 

0.67 0.726 0.774 -2.40 – 0.25 Log kNH2 – 0.041 Atoms + 0.60 Virtual log P 

4 (NH2 
column 
model) 

0.68 0.706 0.780 -1.66 – 0.019 Log kNH2 – 0.59 Gyration radius + 0.64 Virtual log P – 0.0038 Melting point 

4 (HILIC 
column 
model) 

0.68 0.708 0.775 -2.58 – 0.30 Log kNH2 – 0.039 Atoms + 0.18 Lipole (Broto) + 0.51 Virtual log P 

5 
(theoretical 
descriptors 

model) 

0.69 0.694 0.777 -2.29 - 0.054 Log kNH2 – 0.039 Atoms + 0.18 Lipole (broto) + 0.43 Virtual log P - 0.22 H-bond donor 
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5 (NH2 
column 
model) 

0.69 0.693 0.776 -1.64 - 0.036 Log kNH2 - 0.76 Gyration radius +  0.71 Virtual log P + 0.15 H-bond acceptor - 0.0041 Melting 
point 

5 (HILIC 
column 
model) 

0.69 0.700 0.774 -2.74 – 0.34 Log kNH2 – 0.046 Atoms + 0.20 Lipole (Broto) + 0.54 Virtual log P + 0.11 H-bond acceptor 

6 
(theoretical 
descriptors 

model) 

0.71 0.678 0.775 -2.56 - 0.033 Log kNH2 + 0.0060 Polar area (PSA) - 0.0073 Volume  + 0.23 Lipole (Broto) + 0.50 Virtual log P - 
0.43 H-bond donor 

6 (NH2 
column 
model) 

0.72 0.669 0.768 -1.55 + 0.24  Log kNH2 - 0.64 Gyration radius + 0.0057 Polar area (PSA) + 0.61 Virtual log P - 0.42 H-bond 
donor - 0.0045 Melting point 

6 (HILIC 
column 
model) 

0.70 0.686 0.785 -2.61 – 0.21 Log kNH2 – 0.037 Atoms + 0.19 Lipole (Broto) + 0.51 Virtual log P + 0.12 H-bond acceptor – 
0.0031 Melting point 

7 (NH2 
column 
model) 

0.73 0.654 0.778 -2.66 + 0.020 Log kNH2 – 0.031 Atoms + 0.0075 Polar area + 0.25 Lipole (Broto) + 0.43 Virtual log P – 0.42 H-
bond donor – 0.0042 Melting point 

7 (HILIC 
column 
model) 

0.71 0.677 0.792 -2.35 – 0.0038 Log kNH2 – 0.036 Atoms + 0.19 Lipole (Broto) + 0.43 Virtual log P – 0.18 H-bond donor + 0.10 
H-bond acceptor – 0.0029 Melting point 

8 (NH2 
column 
model) 

0.73 0.652 0.795 -2.78 + 0.0061 Log kNH2 – 0.036 Atoms + 0.055 Appx. Dimensions (3) + 0.0073 Polar area + 0.25 Lipole (Broto) 
+ 0.42 Virtual log P – 0.42 H-bond donor – 0.004 2Melting point 
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Table A6: All generated MLR models for the phenyl stationary phase based on Vega ZZ descriptors (n = 58) 

Number of 
independent 
variables 

r² SE RMSEC RMSECV Equation (log Kp = ….) 

1 0.38 1.000 0.982 1.025 -2.44 – 1.98 Log kphnyl 

2 0.73 0.663 0.645 0.686 -3.56 + 0.60 Virtual log P – 1.91 Log kphenyl 

3 0.75 0.647 0.625 0.681 -3.12 - 0.0029 Melting point + 0.55 Virtual log P – 1.59 Log kphenyl 

4 0.76 0.640 0.612 0.682 -2.50 + 0.58 Virtual log P - 1.40 Log kphenyl - 0.16 H-bond donor - 0.29 Gyration radius  

5 0.76 0.639 0.605 0.689 -2.86 + 0.48 Virtual log P – 1.31 Log kphenyl – 0.016 Atoms + 0.10 Lipole (Broto)  - 0.18 H-bond 
donor 

6 0.77 0.642 0.602 0.709 -2.81 – 0.001 Melting point + 0.46 Virtual log P – 1.29 Log kphenyl – 0.01 Atoms + 0.10 Lipole 
(Broto)  - 0.15 H-bond donor 

7 0.77 0.645 0.599 0.723 -2.91 – 0.0020 Melting point + 0.47 Virtual log P – 1.16 Log kphenyl – 0.014 Atoms + 0.0026 Polar 
area (PSA)  + 0.14 Lipole (Broto)  - 0.24 H-bond donor 

Table A7: All generated MLR models for the BEH stationary phase based on Vega ZZ descriptors (n = 55) 

Number of 
independent 
variables 

r² SE RMSEC RMSECV Equation (log Kp = ….) 

1 0.39 0.986 0.968 1.014 -2.77 - 1.70 Log kBEH 

2 0.65 0.748 0.727 0.772 -3.71 + 0.53 Virtual log P - 1.31  Log kBEH 
3 0.76 0.625 0.602 0.654 -2.86 + 0.56 Virtual log P - 0.87  Log kBEH  - 0.029 Atoms 
4 0.78 0.607 0.579 0.672 -3.86 + 0.47 Virtual log P - 1.15  Log kBEH  - 0.054 Atoms + 0.16 Appx. Dimensions (1) 
5 0.79 0.605 0.571 0.675 -4.11 + 0.41 Virtual log P - 1.14  Log kBEH  - 0.057 Atoms + 0.10 Lipole (Broto)  + 0.18 Appx. 

Dimensions (1) 
6 0.79 0.603 0.563 0.692 -3.84 + 0.39 Virtual log P - 0.0020 Melting point - 1.03  Log kBEH  - 0.049 Atoms + 0.11 Lipole 

(Broto)  + 0.16 Appx. Dimensions (1) 
7 0.79 0.609 0.563 0.703 -3.79 + 0.41 Virtual log P - 0.0022 Melting point - 0.99  Log kBEH - 0.049 Atoms + 0.033 H-bond 

acceptor + 0.11 Lipole (Broto)  + 0.15 Appx. Dimensions (1) 
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