Steden bouwen uit assen

Eveline
Buyens

“Tegen het einde van de eeuw zullen 619.000 Belgen in gebieden onder de zeespiegel wonen.” De opwarming van de Aarde is overal voelbaar, ook in België. Om de overstroming van België tegen te gaan, is een vermindering in broeikasgassen nodig. Maar hoe pakt men dat praktisch aan? Welk aandeel heeft de bouw van steden daarin? En op welke manier kan de bouwkundige sector zijn CO2-uitstoot beperken?

Deze thesis onderzocht een nieuwe mogelijkheid om steden op een duurzame manier te bouwen: betonnen gebouwen op basis van biomassa-assen.

“Concrete is the single most widely used material in the world …”

and it has a carbon footprint to match.” Door de enorme vraag naar beton is de betonindustrie verantwoordelijk voor 5% van de menselijke CO2-uitstoot. Bovendien wordt de toekomst alleen nog maar dramatischer door de exponentiële groei in ontwikkelingslanden. De oorzaak van zijn grote voetafdruk ligt bij de productie van het bestanddeel cement. Cement is de lijm die de stenen in beton met elkaar verbindt. Bij de productie van cement wordt niet alleen CO2 uitgestoten om de hoge oventemperaturen te verkrijgen, maar het is bovendien ook een reactieproduct tijdens het productieproces zelf. Een manier om beton milieuvriendelijker te maken is daarom een alternatieve lijm te vinden om het beton te binden.

Voorspelling van de wereldwijde cementproductie: exponentiële groei in ontwikkelingslanden



Afbeelding verwijderd.

Assen in plaats van cement

Een milieuvriendelijke mogelijkheid om de cementproductie te verminderen is een deel van cement te vervangen door vliegassen. Vliegassen zijn assen van de verbranding in elektriciteitscentrales en worden apart opgevangen. Die assen bezitten net als cement bindende eigenschappen na contact met water. De assen van steenkoolcentrales kennen al een uitgebreide toepassing als cementvervanger. De vraag vanuit de cementindustrie is namelijk zo groot (204 kton in 2011), dat een extra hoeveelheid van 45 kton werd geïmporteerd uit de buurlanden. Deze thesis onderzocht een nieuw soort vliegas: biomassavliegas. Biomassavliegas is het afvalproduct van biomassacentrales en mag volgens Europese normen nog niet gerecycleerd worden. Daardoor wordt de afvalberg van biomassavliegas steeds groter en groter.

Van houtafval naar biomassa-assen naar milieuvriendelijk beton

Afbeelding verwijderd.

De recyclage van biomassa-assen heeft een positieve milieu-impact omwille van drie redenen:

  • minder afval;
  • minder stortkosten = stimulans voor biomassa als alternatieve brandstof;
  • minder cementproductie.

De eerste aspecten zijn de daling in afval en zo ook stortkosten. Minder stortkosten vormt een bijkomende drijfveer voor de biomassa-industrie in de strijd tegen de vervuilende steenkoolcentrales. Biomassa is in vergelijking met fossiele brandstoffen namelijk milieuvriendelijker. Er is geen netto CO2-uitstoot, omdat de hoeveelheid geproduceerde CO2 tijdens de verbranding ongeveer gelijk is aan de opgenomen CO2 tijdens het groeiproces van de biomassa. Bovendien daalt de cementproductie, wat ook voor een daling in CO2-uitstoot zorgt. Kortom, biomassavliegas minimaliseert de CO2-voetafdruk van beton.

Voldoen ze aan de Europese eisen?

Het onderzoek bekeek de biomassavliegassen van twee centrales: A&S in West-Vlaanderen en ERDA in de provincie Luxemburg. Een eerste stap in het onderzoek is de controle van de Europese eisen. Europa legt materiaaleigenschappen op voordat de assen op grote schaal toegepast mogen worden. Omdat de twee biomassacentrales een andere verbrandingswijze en biomassabron gebruiken, waren ook verschillen in materiaaleigenschappen zichtbaar. Zo was bijvoorbeeld het sulfaatgehalte bij A&S veel groter dan bij ERDA. Om aan de Europese limieten te voldoen dienen de vliegassen behandeld te worden. Bij de ERDA-vliegas was wassen met water voldoende, maar bij A&S is een oplossing van Na2CO3 nodig. Door het wassen lossen de schadelijke chemische verbindingen op en spoelen ze weg samen met het oplosmiddel.

Reageert het snel genoeg?

Eens de vliegassen voldoen aan de Europese eisen is een volgende stap de reactiviteit na te gaan. De vliegas moet snel genoeg reageren en het beton binden. Mengsels van 70% cement, 30% vliegas en water werden onderzocht op reactiviteit en zwelling. Omdat de assen een chemische beschermlaag hebben, reageren ze trager dan cement. Dat is niet altijd een probleem en wordt in sommige toepassingen zelfs verkozen. In grote betonnen constructies zoals stuwdammen verkiest men trage reacties. Als de reacties te snel gebeuren, komt er te veel warmte tegelijkertijd vrij wat scheuren in het beton kan opleveren.

Een tweede probleem deed zich voor bij de A&S-assen: grote zwelling. In de eerste 24 u was er een zo grote expansie dat het beton niet meer bruikbaar zou zijn voor normale gebouwen. Ook hier zijn andere toepassingen waarin dat wel gewenst is. Een voorbeeld hiervan is cellenbeton. Door het zwellen bestaat cellenbeton uit vele kleine luchtholtes. Die luchtholtes zorgen voor goede thermische eigenschappen van het beton waardoor het als isolatiemateriaal wordt toegepast.

Zwelling voor en na het wassen met een Na2CO3-oplossing

Afbeelding verwijderd.

Naast de voorgestelde oplossingen, bekeek het onderzoek hoe de vliegas in normale gebouwen zijn toepassing kan vinden. De remedie tegen lage reactiviteit en grote zwelling werd al aangehaald: wassen met een Na2CO3-oplossing. Het wassen zorgt voor een gedeeltelijke afbraak van de beschermlaag en spoelt de expanderende verbindingen vooraf weg.

Is het resulterende beton even sterk?

Een voorlaatste stap is de overgang naar mortel: een mengsel van 70% cement, 30% vliegas, water en zand. Hier moet de vliegas haar sterkte als lijm tussen de zandkorrels bewijzen. De reactiviteit was lager dan cement en daarom groeit de sterkte van de mortel ook trager. Vergelijk het met secondelijm: secondelijm reageert en bindt veel sneller dan een gewone lijm. Alhoewel de vliegas veel trager het zand en water bindt, is hij op lange termijn wel heel effectief. Op 28 dagen steeg de vliegasmortel 40% in sterkte t.o.v. 7 dagen, terwijl de cementmortel slechts met 10% toenam. Als die groei zich voortzet, zorgt vliegas voor een gelijke of zelfs grotere sterkte op lange termijn.

De resultaten zijn veelbelovend voor de laatste stap in het onderzoek naar biomassavliegas: beton. Beton bevat dezelfde samenstelling als mortel, maar inclusief grind. Verder onderzoek moet uitwijzen of ook hier de vliegas voldoende sterkte oplevert.

Besluit

Assen van biomassacentrales kunnen gedeeltelijk cement vervangen in beton. Een stad uit assen maken? Het is mogelijk én het helpt in de strijd tegen de klimaatopwarming!

Bibliografie

[1] Aïtcin, P.-C. en Mindess, S. (2011). In Sustainability of concrete, chapter 2.

Taylor & Francis, New York, Verenigde Staten. ISBN:978-1135151461.

[2] Alahrache, S., Winnefeld, F., Champenois, J.-B., Hesselbarth, F., en Lothenbach,

B. (2016). Chemical activation of hybrid binders based on siliceous

fly ash and Portland cement. Cement and Concrete Composites, 66:10–23.

doi:10.1016/j.cemconcomp.2015.11.003.

[3] Alarcon-Ruiz, L., Platret, G., Massieu, E., en Ehrlacher, A. (2005). The use of

thermal analysis in assessing the effect of temperature on a cement paste. Cement

and Concrete Research, 35(3):609–613. doi:10.1016/j.cemconres.2004.06.015.

[4] Alonso, S. en Palomo, A. (2001). Alkaline activation of metakaolin and calcium

hydroxide mixtures : influence of temperature , activator concentration and solids

ratio. Materials Letters, 47(1-2):55–62. doi:10.1016/S0167-577X(00)00212-3.

[5] American Society of Concrete Contractors and American Concrete Institute

(2005). The Contractor’s Guide to Quality Concrete Construction. American

Society of Concrete Contractors. ISBN:978-0870311673.

[6] Antiohos, S., Papageorgiou, A., en Tsimas, S. (2006). Activation of fly ash

cementitious systems in the presence of quicklime. Part II: Nature of hydration products,

porosity and microstructure development. Cement and Concrete Research,

36(12):2123–2131. doi:10.1016/j.cemconres.2006.09.013.

[7] Antiohos, S. en Tsimas, S. (2004). Activation of fly ash cementitious systems

in the presence of quicklime. Part I. Compressive strength and pozzolanic

reaction rate. Cement and Concrete Research, 34(5):769 – 779.

doi:10.1016/j.cemconres.2003.08.008.

[8] Arliguie, G. en Grandet, J. (1990a). Etude de l’hydratation du ciment en

presence de zinc influence de la teneur en gypse. Cement and Concrete Research,

20(3):346–354. doi10.1016/0008-8846(90)90023-Q.

[9] Arliguie, G. en Grandet, J. (1990b). Influence de la composition d’un ciment

portland sur son hydration en presence de zinc. Cement and Concrete Research,

20(4):517–524. doi:10.1016/0008-8846(90)90096-G.

[10] A&S Energie. A&S Energie: Wat doen we? URL: http://www.a-senergie.

be/watdoenwe.html, bekeken op 19-12-2015.

[11] Ataie, F. F., Juenger, M. C., Taylor-Lange, S. C., en Riding, K. A. (2015).

Comparison of the retarding mechanisms of zinc oxide and sucrose on cement

hydration and interactions with supplementary cementitious materials. Cement

and Concrete Research, 72:128–136. doi:10.1016/j.cemconres.2015.02.023.

[12] Aubert, J. E., Husson, B., en Sarramone, N. (2006). Utilization of municipal

solid waste incineration ( MSWI ) fly ash in blended cement Part 1 : Processing and

characterization of MSWI fly ash. Journal of Hazardous Materials, 136:624–631.

doi:10.1016/j.jhazmat.2005.12.041.

[13] Aubert, J. E., Husson, B., en Vaquier, A. (2004). Metallic aluminum in MSWI

fly ash : quantification and influence on the properties of cement-based products.

Waste Management, 24:589–596. doi:10.1016/j.wasman.2004.01.005.

[14] Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and

elevated temperature curing. Cement and Concrete Research, 35(6):1224–1232.

doi:10.1016/j.cemconres.2004.06.031.

[15] BauMineral KraftWerkstoffe (2014). Product Data Sheet: Microsit R .

[16] Beckman Coulter. Products: Laser Diffraction Particle Size Analyzers.

URL: https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=

true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_

RENDERER_path=%252Fwsr%252Findustrial%252Fproducts%252Flaserdiffraction-

particle-size-analyzers%252Findex.htm, bekeken op 20-12-2015.

[17] Berra, M., Mangialardi, T., en Paolini, A. E. (2015). Reuse of woody biomass fly

ash in cement-based materials. Construction and Building Materials, 76:286–296.

doi:10.1016/j.conbuildmat.2014.11.052.

[18] Berra, M. et al. (2011). Reuse of Woody Biomass Fly Ash in Cement-Based

Materials: Leaching Tests. In Recycling of biomass ashes, chapter 10, pages

133–146. Springer, Berlijn Heidelberg, Duitsland. doi:10.1007/978-3-642-19354-5.

[19] Bertolini, L., Carsana, M., Cassago, D., Quadrio, A., en Collepardi, M. (2004).

MSWI ashes as mineral additions in concrete. Cement and Concrete Research,

34(10):1899–1906. doi:10.1016/j.cemconres.2004.02.001.

[20] Bily, P. (2012). Exploitation of TiO2 nanoparticles in concrete industry. In

Proceedings of the 9th fib International PhD Symposium in Civil Engineering,

Karlsruhe, Duitsland.

[21] CBR HeidelbergCement Group (2007). Productfiche Portlandcement CEM I.

[22] Chan, C.-M., Wu, J., Li, J.-X., en Cheung, Y.-K. (2002). Polypropylene/calcium

carbonate nanocomposites. Polymer, 43(10):2981–2992. doi:10.1016/S0032-

3861(02)00120-9.

[23] Chancey, R. T., Stutzman, P., Juenger, M. C. G., en Fowler, D. W.

(2010). Comprehensive phase characterization of crystalline and amorphous

phases of a Class F fly ash. Cement and Concrete Research, 40(1):146–156.

doi:10.1016/j.cemconres.2009.08.029.

[24] Chatterji, S. (1995). Mechanism of expansion of concrete due to the presence

of dead-burnt CaO and MgO. Cement and Concrete Research, 25(1):51–56.

doi:10.1016/0008-8846(94)00111-B.

[25] Chindaprasirt, P. (2005). Effect of fly ash fineness on compressive strength and

pore size of blended cement paste. Cement and Concrete Composites, 27(4):425–428.

doi:10.1016/j.cemconcomp.2004.07.003.

[26] Chindaprasirt, P., Homwuttiwong, S., en Sirivivatnanon, V. (2004). Influence

of fly ash fineness on strength, drying shrinkage and sulfate resistance

of blended cement mortar. Cement and Concrete Research, 34(7):1087–1092.

doi:10.1016/j.cemconres.2003.11.021.

[27] Chindaprasirt, P., Jaturapitakkul, C., en Sinsiri, T. (2007). Effect of fly ash

fineness on microstructure of blended cement paste. Construction and Building

Materials, 21(7):1534 – 1541. doi:10.1016/j.conbuildmat.2005.12.024.

[28] Christiaens, K. en Jonckheere, S. (2011-2012). Gedrag van schraal beton op

basis van gerecycleerde granulaten bij warme weersomstandigheden . PhD thesis,

Departement Industriële Wetenschappen en Technologie KHBO.

[29] Chwast, J., Todorovic, J., Janssen, H., en Elsen, J. (2015). Gypsum efflorescence

on clay brick masonry: Field survey and literature study. Construction and

Building Materials, 85:57–64. doi:10.1016/j.conbuildmat.2015.02.094.

[30] Cizer, O. (2009). Competition Between Carbonatation and Hydration of Calcium

Hydroxide and Calcium Silicate Binders. PhD thesis, KU Leuven. ISBN: 978-

9460180552.

[31] Cizer, O. (2014-2015). Building Materials: Binders and Durability - course

slides. KU Leuven.

[32] Cohen, M. D. en Mather, B. (1991). Sulfate Attack on Concrete: Research

Needs. Materials Journal, 88(1):62–69.

[33] Collier, N. C., Sharp, J. H., Milestone, N. B., Hill, J., en Godfrey, I. H. (2008).

The influence of water removal techniques on the composition and microstructure

of hardened cement pastes. Cement and Concrete Research, 38(6):737–744.

doi:10.1016/j.cemconres.2008.02.012.

[34] Costa, C. (2015). Hydraulic binders. In Goncalves, M. en Margarido, F., editors,

Materials for Construction and Civil Engineering: Science, Processing, and Design,

pages 1–52. Springer International Publishing. ISBN: 978-3319082363.

[35] Cox, M., Nugteren, H., en Janssen-Jurkovicová, M. (2008). Combustion Residues:

Current, Novel and Renewable Applications. Wiley. ISBN:978-0470094433.

[36] Cullity, B. D. (2014). Elements of X-ray Diffraction. Addison- Wesley Publishing

Company inc. ISBN:978-9400779457.

[37] da Silva, A. L., de Oliveira, A. H., en Fernandes, M. L. S. (2011). Influence of

preferred orientation of minerals in the mineralogical identification process by Xray

diffraction. In International Nuclear Atlantic Conference, Belo Horizonte,MG,

Brazilië. ISBN: 978-8599141045.

[38] Deng, M., Hong, D., Lan, X., en Tang, M. (1995). Mechanism of expansion in

hardened cement pastes with hard-burnt free lime. Cement and Concrete Research,

25(2):440–480. doi:10.1016/0008-8846(95)00030-5.

[39] Detwiler, R. J. (1997). The Role of Fly Ash Composition in Reducing Alkali-

Silica Reaction. Technical report, Portland Cement Association.

[40] Dierckx, P., Vrijders, J., Broos, K., Nielsen, P., Bergmans, J., en

Janssen, A. (2014). Catalogue raw materials, applications and practices

(Catalogus grondstoffen, toepassingen en praktijkvoorbeelden).

URL: http://www.ovam.be/sites/default/files/Catalogus-grondstoffen-toepprakt…{_}

0.pdf, bekeken op 06-05-2016.

[41] Donatello, S., Fern, A., en Palomo, A. (2013). Very High Volume Fly Ash

Cements. Early Age Hydration Study Using Na2SO4 as an Activator. The American

Ceramic Society, 906:900–906. doi:10.1111/jace.12178.

[42] Duxson, P., Provis, J., Lukey, G., en van Deventer, J. (2007). The role of

inorganic polymer technology in the development of green concrete. Cement and

Concrete Research, 37(12):1590–1597. doi:10.1016/j.cemconres.2007.08.018.

[43] Energie Conversie Parken. ECP technologie beschrijving: Verbranding.

URL: http://ecp-biomass.eu/sites/ecp-biomass.eu/files/books/ECP%20TF%

20Verbranding_LG_HP_2nd.pdf, bekeken op 06-05-2016.

[44] ERDA. ERDA: Energies Renouvelables des Ardennes. URL: http:

//www.erda.be/, bekeken op 22-04-2016.

[45] Esteves, T. C., Rajamma, R., Soares, D., Silva, a. S., Ferreira, V. M., en

Labrincha, J. a. (2012). Use of biomass fly ash for mitigation of alkali-silica

reaction of cement mortars. Construction and Building Materials, 26(1):687–693.

doi:10.1016/j.conbuildmat.2011.06.075.

[46] Europese Commissie. Doelstellingen Europa 2020. URL: http:

//ec.europa.eu/europe2020/europe-2020-in-a-nutshell/targets/index_nl.htm, bekeken

op 27-10-2015.

[47] Fan, Y., Yin, S., Wen, Z., en Zhong, J. (1999). Activation of fly ash and

its effects on cement properties. Cement and Concrete Research, 29(December

1997):467–472. doi:10.1016/S0008-8846(98)00178-1.

[48] FEBELCEM (2007). De bijdrage van de cementindustrie tot de beperking van de

CO2 -uitstoot. URL: http://www.febelcem.be/fileadmin/user{_}upload/autrespublications/

nl/CO2nl.pdf. doi:10.1016/S0378-3820(97)00059-3.

[49] Fernández-Jiménez, A., Paloma, A., en Criado, M. (2005a). Alkali activation of

fly ashes: Mechanism of reaction. In Bilek, V. en Kersner, Z., editors, Congress of

Non-Traditional Cement and Concrete II, volume 30, pages 1–12. Brno University

of Technology.

[50] Fernández-Jiménez, A., Paloma, A., en Criado, M. (2005b). Microstructure

development of alkali-activated fly ash cement: a descriptive model. Cement and

Concreate Research, 35:1204–1209. doi:10.1016/j.cemconres.2004.08.021.

[51] Freyer, D. en Voigt, W. (2003). Crystallization and phase stability of CaSO4 and

CaSO4- based salts. Monatshefte für Chemie / Chemical Monthly, 134(5):693–719.

doi:10.1007/s00706-003-0590-3.

[52] García-Lodeiro, I., Fernández-Jiménez, A., en Palomo, A. (2013). Hydration

kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites,

39:82 – 92. doi:10.1016/j.cemconcomp.2013.03.025.

[53] García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., en Macphee, D. E.

(2010a). Effect of Calcium Additions on N-A-S-H Cementitious Gels. Journal of the

American Ceramic Society, 93(7):1934–1940. doi:10.1111/j.1551-2916.2010.03668.x.

[54] García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., en Macphee,

D. E. (2010b). Effect on fresh C-S-H gels of the simultaneous addition

of alkali and aluminium. Cement and Concrete Research, 40(1):27 – 32.

doi:10.1016/j.cemconres.2009.08.004.

[55] García-Lodeiro, I., Macphee, D. E.and Palomo, A., en Fernández-Jiménez, A.

(2009). Effect of alkalis on fresh C-S-H gels: FTIR analysis. Cement and Concrete

Research, 39(3):147 – 153. doi:10.1016/j.cemconres.2009.01.003.

[56] García-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., en Macphee, D. E.

(2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the

ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cement and Concrete Research,

41(9):923 – 931. doi:10.1016/j.cemconres.2011.05.006.

[57] Garcia-Lodeuro, I., Palomo, A., en Fernández-Jiménez, A. (2014). An overview

of the chemistry of alkali-activated cement-based binders. In Pacheco-Torgal, F.,

Labrincha, J., Leonelli, C., Palomo, A., en Chindaprasit, P., editors, Handbook

of Alkali-Activated Cements, Mortars and Concretes, chapter 2. Elsevier Science.

ISBN:9781-782422884.

[58] Garrault, S., Finot, E., Lesniewska, E., en Nonat, A. (2005). Study of CSH

growth on C3S surface during its early hydration. Materials and Structures,

38:435–442. doi:10.1016/0008-8846(79)90119-4.

[59] Garrault, S. en Nonat, A. (1999). Experimental investigation of calcium

silicate hydrate C-S-H nucleation. Journal of Crystal Growth, 200:565–574.

doi:10.1016/0008-8846(79)90119-4.

[60] Gartner, E., Young, J., Damidot, D., en Jawed, I. (2002). Hydration of portland

cement. In Barnes, P. en Bensted, J., editors, Structure and Performance of

Cements, Second Edition. Taylor & Francis. ISBN: 978-0203477786.

[61] Gartner, E. M. en Jennings, H. M. (1987). Thermodynamics of calcium silicate

hydrates and their solutions. Journal of the American Ceramic Society, 70(10):743–

749. doi:10.1111/j.1151-2916.1987.tb04874.x.

[62] Ghosh, R. S. en Timusk, J. (1981). Creep of fly ash concrete. ACI Journal,

78(5):351–387.

[63] Ginés, O., Chimenos, J. M., Vizcarro, A., Formosa, J., en Rosell, J. R. (2009).

Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation:

Environmental and mechanical considerations. Journal of Hazardous Materials,

169(1-3):643–650. doi:10.1016/j.jhazmat.2009.03.141.

[64] Girón, R.P. et al. (2013). Properties of fly ash from forest biomass combustion.

Fuel, 114:71–77. doi:10.1016/j.fuel.2012.04.042.

[65] Griffin, T. (1990). Cementing calculations. In Nelson, E., editor, Well Cementing,

Developments in Petroleum Science, chapter C. Elsevier Science.

[66] Guo, X., Shi, H., en Dick, W. A. (2010). Compressive strength and microstructural

characteristics of class C fly ash geopolymer. Cement and Concrete

Composites, 32(2):142–147. doi:10.1016/j.cemconcomp.2009.11.003.

[67] Heirman, G. en De Geyter, N. (2001-2002). De invloed van vulstoffen op de

eigenschappen van zelfverdichtend beton in vloeibare en verharde toestand. PhD

thesis, KU Leuven.

[68] Imbabi, M. S., Carrigan, C., en McKenna, S. (2012). Trends and developments

in green cement and concrete technology. International Journal of Sustainable

Built Environment, 1(2):194 – 216. doi:10.1016/j.ijsbe.2013.05.001.

[69] Innorta, G., Rabbi, E., en Tomadin, L. (1980). The gypsum-anhydrite equilibrium

by solubility measurements. Geochimica et Cosmochimica Acta, 44(12):1931

– 1936. doi:10.1016/0016-7037(80)90192-1.

[70] Insam, H. en Knapp, B. (2011). Recycling of Biomass Ashes: Current Technologies

and Future Research Needs. In Insam, H. en Knapp, B., editors, Recycling of

biomass ashes. Springer, Berlijn Heidelberg, Duitsland. ISBN: 978-3642193538.

[71] Jenkins, B., Baxter, L., Miles, T., en Miles, T. (1998). Combustion properties of

biomass. Fuel Processing Technology, 54:17–46. doi:10.1016/S0378-3820(97)00059-

3.

[72] Jeon, D., Jun, Y., Jeong, Y., en Eun Oh, J. (2015). Microstructural and

strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-

activated Class F fly ash system. Cement and Concrete Research, 67:215–225.

doi:10.1016/j.cemconres.2014.10.001.

[73] Joshi, R. en Lohita, R. (1997). Fly Ash in Concrete: Production, Properties and

Uses. Advances in concrete technology. Taylor & Francis. ISBN:978-9056995805.

[74] Juilland, P., Gallucci, E., Flatt, R., en Scrivener, K. (2010). Dissolution theory

applied to the induction period in alite hydration. Cement and Concrete Research,

40(6):831–844. doi:10.1016/j.cemconres.2010.01.012.

[75] Kaewmanee, K., Krammart, P., Sumranwanich, T., Choktaweekarn, P.,

en Tangtermsirikul, S. (2013). Effect of free lime content on properties of

cement-fly ash mixtures. Construction and Building Materials, 38:829 – 836.

10.1016/j.conbuildmat.2012.09.035.

[76] Kalantar-Zadeh, K. en Fry, B. Nanotechnology-Enabled Sensors. Springer US.

ISBN: 9780-387680231.

[77] Kantro, D. L., Brunauer, S., en Weise, C. H. (1962). Development of surface

in the hydration of calcium silicates. II. Extension of investigations to earlier

and later stages of hydration. Journal of Chemical Chemistry, 66(10):1804–1809.

doi:10.1021/j100816a007.

[78] Karltun, E., Saarsalmi, A., Ingerslev, M., en Mandre, M. (2008). Wood Ash

Recycling: Possibilities and Risks. In Sustainable Use of Forest Biomass for

Energy: A Synthesis with Focus on the Baltic and Nordic Region, chapter 4, pages

79–108. Springer, Dordrecht, Nederland. ISBN: 978-1402050534.

[79] Kim, Y.-Y., Lee, K.-M., Bang, J.-W., en Kwon, S.-J. (2014). Effect of W/C Ratio

on Durability and Porosity in Cement Mortar with Constant Cement Amount. Advances

in Materials Science and Engineering, 2014:1–11. doi:10.1155/2014/273460.

[80] Knapen, E. (2007). Microstructure Formation in Cement Mortars Modified

With Water-Soluble Polymers. PhD thesis, KU Leuven. ISBN:978-9056828899.

[81] Kocaba, V. (2009). Development and Evaluation of Methods to Follow Microstructural

Development of Cementitious Systems Including Slags. PhD thesis,

École Polytechnique Fédérale de Lausanne.

[82] Kosmatka, S., Kerkhoff, B., en Panarese, W. C. (1996). Fly Ash, Slag, Silica

Fume, and Natural Pozzolans. Chapter 3, Design and Control of Concrete Mixtures,

15th Ed., (54048):57–72. ISBN: 0-89312-217-3.

[83] Kumar, S., Kumar, R., Alex, T., Bandopadhyay, A., en Mehrotra, S. (2005).

Effect of mechanically activated fly ash on the properties of geopolymer cement. In

Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings

of the World Congress Geopolymer 2005, pages 113–116. Geopolymer Institute.

ISBN:978-2951482005.

[84] Kurdowski, W. (2014). Cement and Concrete Chemistry. Springer Netherlands.

ISBN:978-9400779457.

[85] Ladang, C. en Xhonneux, C. (2013). II.1 Cement. In Betontechnologie. Belgische

Betongroepering, Brussel. ISBN:978-29600637-2-1.

[86] Langley, W. S., Carette, G. G., en Malhotra, V. M. (1989). Structural concrete

incorporating high volumes of astm class fly ash. ACI Materials Journal, 86(5):507–

514.

[87] Li, X., Ma, X., Zhang, S., en Zheng, E. (2013). Mechanical Properties and

Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar. Materials,

6(4):1485–1495. doi:10.3390/ma6041485.

[88] Lohtia, R., Nautiyal, B., Jain, K., en Jain, O. (1977). Compressive strength

of plain and fly ash concrete by non-destructive testing methods. Journal of the

Institution of Engineers (India), 58:40–45.

[89] Lunnan, A., Stupak, I., Asikainen, A., en Karsten, R. (2008). Introduction to

sustainable utilisation of forest energy. In Röser, D., Asikainen, A., Karsten, R., en

Stupak, I., editors, Sustainable Use of Forest Biomass for Energy: A Synthesis with

Focus on the Baltic and Nordic Region, chapter 1. Springer, Dordrecht, Nederland.

ISBN: 978-1402050534.

[90] Ma, W. en Brown, P. W. (1997). Hydrothermal reactions of fly ash with

Ca(OH)2 and CaSO4-2H2O. Cement and Concrete Research, 27(8):1237 – 1248.

doi:10.1016/S0008-8846(97)00116-6.

[91] Malvern. Products: Laser Diffraction. URL: http:

//www.malvern.com/en/products/technology/laser-diffraction/, bekeken

op 20-12-2015.

[92] Mangialardi, T. (2001). Sintering of MSW fly ash for reuse as a concrete

aggregate. 87:225–239. doi:10.1016/S0304-3894(01)00286-2.

[93] Marjanovic, N., Komljenovic, M., Ba˘s˘carevic, Z., en Nikolic, V. (2015). Comparison

of two alkali-activated systems: Mechanically activated fly ash and fly

ash-blast furnace slag blends. In 7th Scientific-Technical Conference on Material

Problems in Civil Engineering MATBUD’2015, volume 108, pages 231 – 238.

doi:10.1016/j.proeng.2015.06.142.

[94] Misra, M. K., Ragland, K. W., en Baker, A. J. (1993). Wood ash composition

as a function of furnace temperature. Biomass and Bioenergy, 4:103–116.

doi:10.1016/0961-9534(93)90032-Y.

[95] Moir, G. (2003). Cements. In Newman, J. en Choo, B., editors, Advanced

Concrete Technology Set, pages 3–45. Elsevier Science. ISBN: 978-0080526560.

[96] Mota, B., Matschei, T., en Scrivener, K. (2015). The influence of sodium

salts and gypsum on alite hydration. Cement and Concrete Research, 75:53–65.

doi:10.1016/j.cemconres.2015.04.015.

[97] Narayanan, N. en Ramamurthy, K. (2000). Structure and properties of aerated

concrete: a review. Cement and Concrete Composites, 22(5):321 – 329.

doi:10.1016/S0958-9465(00)00016-0.

[98] Nawaz, A., Julnipitawong, P., Krammart, P., en Tangtermsirikul, S. (2016). Effect

and limitation of free lime content in cement-fly ash mixtures. Construction and

Building Materials, 102, Part 1:515 – 530. doi:10.1016/j.conbuildmat.2015.10.174.

[99] Nunes, L., Matias, J., en Catalão, J. (2015). Biomass combustion systems:

A review on the physical and chemical properties of the ashes. Renewable and

Sustainable Energy Reviews, 53:235–242. doi://10.1016/j.rser.2015.08.053.

[100] Odler, I. (2003). Hydration, setting and hardening of cement. In Hewlett,

P., editor, Lea’s Chemistry of Cement and Concrete, chapter 6. Elsevier Science.

ISBN: 978-0080535418.

[101] Odler, I. en Dörr, H. (1979). Early hydration of tricalcium silicate II. The

induction period. Cement and Concrete Research, 9:277–248. doi:10.1016/0008-

8846(79)90119-4.

[102] Ouyang, C., Nanni, A., en Chang, W. F. (1988). Internal and external sources

of sulfate ions in portland cement mortar: two types of chemical attack. Cement

and Concrete Research, 18(5):669–709. doi:10.1016/0008-8846(88)90092-0.

[103] OVAM. Afval & materialen: Houtafval. URL: http://www.ovam.be/houtafval,

bekeken op 16-05-2016.

[104] Oxford Instruments. Industrial products: XRF- X-ray Fluoresence analysis

explained. URL: http://www.oxford-instruments.com/businesses/industrialproducts/

industrial-analysis/xrf, bekeken op 20-12-2015.

[105] Pacewska, B., Wilinska, I., en Blonkowski, G. (2008). Investigations of cement

early hydration in de presence of chemically activated fly ash. Journal of Thermal

Analysis and Calorimetry, 93(3):769–776. doi:10.1007/s10973-008-9143-7.

[106] Pandian, M. S. X-ray Diffraction Analysis: Principle, Instrument and Applications.

URL: https://www.researchgate.net/publication/260659249_X-ray_

Diffraction_Analysis_Principle_Instrument_and_Applications, bekeken op 20-

12-2015.

[107] Pane, I. en Hansen, W. (2005). Investigation of blended cement hydration

by isothermal calorimetry and thermal analysis. Cement and Concrete Research,

35(6):1155 – 1164. doi:10.1016/j.cemconres.2004.10.027.

[108] Pang, X., Boul, P., en Jimenez, W. C. (2015). Isothermal calorimetry

study of the effect of chloride accelerators on the hydration kinetics

of oil well cement. Construction and Building Materials, 77:260 – 269.

doi:10.1016/j.conbuildmat.2014.12.077.

[109] Papadakis, V. G. (2000). Effect of fly ash on Portland cement systems.

Part II. High-calcium fly ash. Cement and Concrete Research, 30(10):1647–1654.

doi:10.1016/S0008-8846(00)00388-4.

[110] Payá, J., Monzó, J., Borrachero, M., Perris, E., en Amahjour, F. (1998). Thermogravimetric

Methods for Determining Carbon Content in Fly Ashes. Cement

and Concrete Research, 28(5):675 – 686. doi:10.1016/S0008-8846(98)00030-1.

[111] Pecqueur, G., Crignon, C., en Quénée, B. (2001). Behaviour of cementtreated

MSWI bottom ash. Waste Management, 21(3):229–233. doi:10.1016/S0956-

053X(00)00094-5.

[112] Pels, J. R., de Nie, D. S., en Kiel, J. H. (2005). Utilization of ashes from

biomass combustion and gasification. In 14th European Biomass Conference and

Exhibition, Petten, Nederland.

[113] Provis, J. L., Duxson, P., Kavalerova, E., Krivenko, P. V., Pan, Z., Puertas, F.,

en van Deventer, J. S. J. (2014a). Historical Aspects and Overview. In Provis, J. L.

en van Deventer, J. S. J., editors, Alkali Activated Materials, chapter 2. Springer.

ISBN:978-9400776715.

[114] Provis, J. L., Fernández-Jiménez, A., Kamseu, E., Leonelli, C., en Palomo, A.

(2014b). Binder Chemistry: Low-Calcium Alkali-Activated Materials. In Provis,

J. L. en van Deventer, J. S. J., editors, Alkali Activated Materials, chapter 4.

Springer. ISBN:978-9400776715.

[115] Qian, J., Shi, C., en Wang, Z. (2001). Activation of blended cements containing

fly ash. Cement and Concrete Research, 31(8):1121–1127. doi:10.1016/S0008-

8846(01)00526-9.

[116] Rajamma, R., Labrincha, J. A., en Ferreira, V. M. (2012). Alkali activation of

biomass fly ash-metakaolin blends. Fuel, 98:265–271. doi:10.1016/j.fuel.2012.04.006.

[117] Rajamma, R., Senff, L., Ribeiro, M., Labrincha, J., Ball, R., Allen, G., en

Ferreira, V. (2015). Biomass fly ash effect on fresh and hardened state properties

of cement based materials. Composites Part B: Engineering, 77:1–9.

doi:10.1016/j.compositesb.2015.03.019.

[118] Rajamma, R. et al. (2009). Characterisation and use of biomass fly ash

in cement-based materials. Journal of Hazardous Materials, 172:1049–1060.

doi:10.1016/j.jhazmat.2009.07.109.

[119] Ramezanianpour, A. (2013). Cement Replacement Materials: Properties,

Durability, Sustainability. Springer Berlin Heidelberg. ISBN:978-3642367212.

[120] Ritzen, J. (2004). Speciale betonsoorten. In Betonbouw. Deel 4: Materiaalstudie,

technologie, duurzaamheid, renovatie, Betonbouw : berekenen, dimensioneren,

constructie, chapter XVI. Academia Press. ISBN:978-9038206509.

[121] Saikia, N., Mertens, G., Van Balen, K., Elsen, J., Van Gerven, T., en Vandecasteele,

C. (2008). Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash

for using as a fine aggregate in cement mortar. Journal of Hazardous Materials,

154(1-3):766–777. doi:10.1016/j.jhazmat.2007.10.093.

[122] Saikia, N., Mertens, G., Van Balen, K., Elsen, J., Van Gerven, T., en Vandecasteele,

C. (2015). Pre-treatment of municipal solid waste incineration (MSWI)

bottom ash for utilisation in cement mortar. Construction and Building Materials,

96(1-3):76–85. doi:10.1016/j.conbuildmat.2015.07.185.

[123] Schumacher, K. A. en Ideker, J. H. (2014). New Considerations in Predicting

Mitigation of an Alkali-Silica Reaction Based on Fly Ash Chemistry. Journal

of Materials in Civil Engineering, 27(4):04014144. doi:10.1061/(ASCE)MT.1943-

5533.0001021.

[124] Science Education Resource Center at Carleton College. Geochemical

Instrumentation and Analysis: X-Ray Fluorescence (XRF). URL: http:

//serc.carleton.edu/research_education/geochemsheets/techniques/XRF.html, bekeken

op 20-12-2015.

[125] Scientific, F. B. (2005). Operating Manual Freeze Dryer: ALPHA 1-2 LDplus.

URL: http://sydney.edu.au/medicine/bosch/facilities/molecular-biology/Alpha1-

2%20user%20manual.pdf.

[126] Sear, L. (2001). Fly ash in aerated concrete blocks and furnace bottom ash in

lightweight concrete blocks. In Properties and Use of Coal Fly Ash: A Valuable

Industrial By-product, chapter 8. Thomas Telford. ISBN:978-0727730152.

[127] Sha, W. en Pereira, G. B. (2001). Differential scanning calorimetry study of

hydrated ground granulated blast-furnace slag. Cement and Concrete Research,

31(2):327–329. doi:10.1016/S0008-8846(00)00472-5.

[128] Shafaatian, S. M. H., Akhavan, A., Maraghechi, H., en Rajabipour, F.

(2013). How does fly ash mitigate alkali-silica reaction (ASR) in accelerated

mortar bar test (ASTM C1567)? Cement and Concrete Composites, 37:143–153.

doi:10.1016/j.cemconcomp.2012.11.004.

[129] Shi, C. en Day, R. L. (2000a). Pozzolanic reaction in the presence of chemical

activators Part I . Reaction kinetics. Cement and Concrete Research, 30(1):51–58.

doi:10.1016/S0008-8846(99)00205-7.

[130] Shi, C. en Day, R. L. (2000b). Pozzolanic reaction in the presence of chemical

activators: Part II Reaction products and mechanism. Cement and Concrete

Research, 30(4):607–613. doi:10.1016/S0008-8846(00)00214-3.

[131] Shi, C., Roy, D., en Krivenko, P. (2006). Alkali-Activated Cements and

Concretes. Taylor & Francis. ISBN:978-0203390672.

[132] Shirai, H., Ikeda, M., en Tanno, K. (2011). Factors Affecting the Density and

Specific Surface Area (Blaine Value) of Fly Ash from Pulverized Coal Combustion.

Energy Fuels, 25(12):5700–5706. doi:10.1021/ef201071e.

[133] Siddique, R. (2009). Utilization of waste materials and by-products in producing

controlled low-strength materials. Resources, Conservation and Recycling, 54(1):1

– 8. doi:10.1016/j.resconrec.2009.06.001.

[134] Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources,

Conservation and Recycling, 67:27 – 33. doi:10.1016/j.resconrec.2012.07.004.

[135] Siddique, R. en Khan, M. (2011). Fly ash. In Supplementary Cementing

Materials, Engineering Materials, chapter 1. Springer Berlin Heidelberg.

[136] Sridharan, A. (2012). Coal Ashes in Geotechnical Engineering Practice: Beneficial

Aspects. In Workshop on Emerging Trends in Geotechnical Engineering

(ETGE 2012), Guwahati, India.

[137] Stein, H. N. en Stevels, J. M. (1964). Influence of silica on the hydration

of 3CaOSiO2. Journal of Applied Chemistry, 14(8):338–346. doi:

10.1002/jctb.5010140805.

[138] Stojanovic, Z., Markovic, S., en Uskokovic, D. (2010). Measurement of particle

size distribution using laser light diffraction. Tehnika-Novi materijali, 19(5):1–15.

doi:10.1002/mnfr.200500022.

[139] Tadros, M. E., Skalny, J., en Kalyoncu, R. S. (1976). Early hydration of

tricalcium silicate. Journal of the American Ceramic Society, 59(7):344–347.

doi:10.1111/j.1151-2916.1976.tb10980.x.

[140] Takemoto, K. en Uchikawa, H. (1980). Hydration of Pozzolanic Cement.

Proceedings of the 7th International Congress on the Chemistry of Cement, 1.

[141] Taylor, H. (1997). Cement Chemistry. Thomas Telford. ISBN: 978-0727725929.

[142] Temuujin, J., van Riessen, A., en Williams, R. (2009). Influence of calcium

compounds on the mechanical properties of fly ash geopolymer pastes. Journal of

Hazardous Materials, 167(1-3):82–88. doi:10.1016/j.jhazmat.2008.12.121.

[143] Thomas, M. (2011). The effect of supplementary cementing materials on

alkali-silica reaction: A review. Cement and Concrete Research, 41(12):1224–1231.

doi:10.1016/j.cemconres.2010.11.003.

[144] Tian, B. en Cohen, M. D. (2000). Does gypsum formation during sulfate attack

on concrete lead to expansion? Cement and Concrete Research, 30(1):117–123.

doi:10.1016/S0008-8846(99)00211-2.

[145] Tkaczewska, E. en Malolepszy, J. (2009). Hydration of coal biomass

fly ash cement. Construction and Building Materials, 23(7):2694–2700.

doi:10.1016/j.conbuildmat.2008.12.018.

[146] Ulery, A. L. (2006). Amorphous minerals. In Lal, R., editor, Encyclopedia of

Soil Science, Volume 1. 9780849350535. ISBN:978-0849350535.

[147] Van Belleghem, P. Technical Supervisor ERDA, persoonlijke communicatie,

22.04.2016.

[148] Van Gemert, D. (2015). Bouwmaterialen, bindmiddelen en duurzaamheid. CuDi

VTK vzw. ISBN: 978-1415470312.

[149] Vandenbulcke, S. Plant Manager A&S Energie, persoonlijke communicatie,

26.04.2016.

[150] Wan, X., Wang, W., Ye, T., Guo, Y., en Gao, X. (2006). A study on

the chemical and mineralogical characterization of MSWI fly ash using a sequential

extraction procedure. Journal of Hazardous Materials, 134:197–201.

doi:10.1016/j.jhazmat.2005.10.048.

[151] Wang, A., Zhang, C., en Sun, W. (2003). Fly ash effects: I. The morphological

effect of fly ash. Cement and Concrete Research, 33:2023–2029. doi:10.1016/S0008-

8846(03)00217-5.

[152] Wang, K., Shah, S. P., en Mishulovich, A. (2004). Effects of curing temperature

and NaOH addition on hydration and strength development of clinkerfree

CKD-fly ash binders. Cement and Concrete Research, 34(2):299–309.

doi:10.1016/j.cemconres.2003.08.003.

[153] Wang, S. (2015). Cofired biomass fly ashes in mortar: Reduction of Alkali

Silica Reaction (ASR) expansion, pore solution chemistry and the effects

on compressive strength. Construction and Building Materials, 82:123–132.

doi:10.1016/j.conbuildmat.2015.02.021.

[154] Wang, S. en Baxter, L. (2007). Comprehensive study of biomass fly ash in

concrete: Strength, microscopy, kinetics and durability. Fuel Processing Technology,

88:1165–1170. doi:10.1016/j.fuproc.2007.06.016.

[155] Wang, S. et al. (2008). Biomass fly ash in concrete: Mixture proportioning

and mechanical properties. Fuel, 87:365–371. doi://10.1016/j.fuel.2007.05.026.

[156] WHD Microanalysis Consultants Ltd. Alkali-silica reaction in concrete. URL:

http://www.understanding-cement.com/alkali-silica.html, bekeken op 07-12-2015.

[157] World Business Council for Sustainable Development en International Energy

Agency (2009). Cement technology roadmap 2009: Carbon emissions reductions

up to 2050. doi:10.1016/S0378-3820(97)00059-3.

[158] Yildirim, K. en Sümer, M. (2014). Comparative analysis of fly ash effect with

three different method in mortars that are exposed to alkali silica reaction. Composites

Part B: Engineering, 61:110–115. doi:10.1016/j.compositesb.2014.01.004.

[159] Zhang, H. (2011). Cement. In Building Materials in Civil Engineering, Woodhead

Publishing Series in Civil and Structural Engineering, chapter 4. Elsevier

Science. ISBN:978-1845699567.

[160] Zhao, M., Han, Z., Sheng, C., en Wu, H. (2013). Characterization of Residual

Carbon in Fly Ashes from Power Plants Firing Biomass. Energy & Fuels, 27(2):898–

907. doi:10.1021/ef301715p.

[161] Zheng, L., Wang, C., Wang, W., Shi, Y., en Gao, X. (2011). Immobilization

of MSWI fly ash through geopolymerization : Effects of water-wash. Waste

Management, 31(2):311–317. doi:10.1016/j.wasman.2010.05.015.

[162] Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang,

H. M., Yu, W. H., en Wang, H. (2016). Fly ash-based geopolymer: clean production,

properties and applications. Journal of Cleaner Production, 125:253 – 267.

doi:10.1016/j.jclepro.2016.03.019.

Download scriptie (35.52 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2016
Promotor(en)
Prof. dr. Özlem Cizer