Fast Fully Automatic Myocardial Segmentation in 4D cine Cardiac Magnetic Resonance datasets

Sandro
Queirós

Computers meten de grootte en werking van het menselijk hart

Ziekten aan het hart zijn één van de belangrijkste oorzaken van hospitalisatie en sterfte in de wereld. Om een behandeling tijdig te kunnen starten of om de effecten van een behandeling goed op te volgen is het belangrijk om de grootte, de vorm en de vormverandering tijdens de pompende beweging van het hart te kennen. Hiervoor worden scanners gebruikt die toelaten het hart in beeld te brengen. Een erg nauwkeurige (maar relatief dure) technologie maakt beelden door te meten hoe (waterstof)atomen bewegen in veranderende magnetische velden. Deze manier van beelden maken wordt magnetisch resonantie (MR) beeldvorming genoemd en geeft een driedimensionaal beeld van het hart, samengesteld uit verschillende evenwijdige sneden.  Deze beelden stellen de arts in staat het hart te bekijken en om bv. het volume van de hartkamers te meten. Deze metingen gebeuren momenteel manueel wat lang duurt (en dus duur is) omdat de arts op ongeveer 40 beelden de contouren van deze hartkamers moet aanduiden.

Het doel van dit thesisproject was dan ook dit meetproces te automatiseren en de computer deze metingen te laten uitvoeren. Een computer aanleren om de randen van de hartwand te detecteren is echter alles behalve eenvoudig. Hoewel onze hersenen bijvoorbeeld onmiddellijk beseffen dat een rood gebied in een foto eigenlijk een huis vormt, blijft het automatisch herkennen van objecten door een computer erg moeilijk. We vertellen aan een computer hoe hij dit toch kan realiseren door een algoritme te ontwikkelen dat verschillende stappen doorloopt:

1)       Eerst zoekt de computer de positie van het hart in 1 snede. Dit is niet vanzelfsprekend omdat in deze snede ook andere organen en weefsels te zien zijn (zoals de longen of het middenrif) die gelijkaardige patronen in het beeld kunnen opleveren. Omdat we echter weten dat de linker hartkamer er in deze sneden ongeveer als een cirkel uitziet zoeken we eerst naar alle objecten die op een cirkel lijken. Hiervoor definiëren we op voorhand een aantal mogelijke dikwandige elliptische vormen (m.a.w. een verzameling van ellipsen met verschillende grootte, oriëntatie, excentriciteit en wanddikte) en proberen deze ergens in het beeld terug te vinden. Dit proces wordt ‘template matching’ genoemd. Eenmaal we ergens in het beeld een goed passende vorm gevonden hebben weten we ongeveer waar het hart zich in dat beeld bevindt (Figuur a).

2)       De best passende vorm laten we vervolgens vervormen door de randen te verschuiven in de radiale richting, m.a.w. in een richting die door het middelpunt van de best passende ellips gaat. Hierbij wordt geprobeerd om de beeldwaarden voor het gebied binnen en buiten de contour zo homogeen mogelijk te maken. Met andere woorden, indien de best passende vorm oorspronkelijk een aantal witte pixels tot het hartwand zou rekenen, dan probeert het algoritme de rand te verschuiven zodat deze witte pixels niet meer tot de hartwand maar eerder tot de caviteit waar het bloed zich bevindt behoren. Aan de andere kant legt het algoritme de voorwaarde op dat de gevonden hartwand relatief glad is en geen scherpe uitsteeksels mag vertonen (want we weten dat de hartwand dergelijke uitsteeksels niet heeft). Op die manier vindt de computer uiteindelijk een compromis tussen de beeldinformatie en de ‘gladheid’ van de contour. Dit proces wordt ‘active contours’ genoemd,  m.a.w. contouren die actief verschuiven gebruik makend van de beeldinformatie en eventuele extra voorwaarden voor de karakteristieken van de gewenste contour. Het resultaat van deze stap is dat de exacte positie van de hartwand binnen deze snede gekend is (Figuur b).

3)       De informatie uit bovenstaande stap wordt overgedragen naar naburige sneden en we passen telkens opnieuw deze ‘active contours’ toe om de vorm aan te passen in elke snede. Hierbij houden we er rekening mee dat het hart een 3D dimensionale structuur is. Dit betekent dat het verschuiven van de rand in één snede invloed heeft op de positie van de rand in naburige sneden aangezien ook voor de derde dimensie een zeker ‘gladheid’ van het oppervlak vereist is. Op deze manier kennen we dus de positie van de hartwand in alle sneden en dus de volledige vorm in 3D (Figuur c).

4)       Aangezien de hartwand beweegt in het beeld tijdens de pompende beweging van het hart leren we de computer ook nog hoe hij de beweging van de hartwand kan volgen. Hierbij wordt er vanuit gegaan dat de beeldwaarden niet veranderen wanneer het hart beweegt en dat het volgen van de gekende intensiteiten (o.b.v. stap 3) dan ook resulteert in het volgen van de hartwand. Zo kennen we niet alleen de 3D vorm van het hart maar ook de manier waarop deze vorm in de tijd verandert (Figuur d).

Het resultaat van bovenstaande stappen is dat we het volume van de hartkamer in elke fase van de hartcyclus kunnen meten en dus kunnen berekenen hoeveel bloed het hart wegpompt tijdens elke contractie. Dit is het zogenaamde slagvolume en geeft waardevolle informatie over de werking van het hart.

Het ontwikkelde algoritme werd aanvankelijk getest op 45 MR onderzoeken die ter beschikking werden gesteld door een vakvereniging en die voordien reeds door andere onderzoekers gebruikt werden om hun algoritmes te testen. Hiertoe werden deze beelden eerst manueel geanalyseerd en vervolgens door de computer. Het voorgestelde algoritme bleek niet alleen nauwkeuriger te zijn dan reeds bestaande algoritmes maar was bovendien ook veel sneller.

Vervolgens werd het algoritme getest op 318 MR onderzoeken opgenomen in de context van een grote klinische studie waarbij verschillende centra in Europa beeldmateriaal verzamelden en waarbij 1 expert centrum de beelden manueel had geanalyseerd. In 95% van de gevallen kon het voorgestelde algoritme binnen de 10 seconden - volautomatisch - nauwkeurige metingen genereren.

Dit thesiswerk heeft er dus toe geleid dat bij het meten van de vorm en functie van het hart de computer een deel van het werk van de artsen kan overnemen waardoor het onderzoek niet alleen veel sneller maar ook beter reproduceerbaar kan gebeuren. Het is dus een belangrijke stap voorwaarts in het verbeteren van de diagnose en behandeling van hartaandoeningen.

Bibliografie

[1]     S. S. Mader and P. Galliart, Understanding human anatomy and physiology, 5th ed. Boston: McGraw-Hill Higher Education, 2005.

[2]     K. M. Van De Graaff, Human anatomy, 6th ed. Boston: McGraw-Hill, 2002.

[3]     G. J. Tortora and B. Derrickson, Principles of anatomy and physiology, 12th ed. Hoboken, NJ: John Wiley & Sons, 2010.

[4]     A. J. Vander, J. H. Sherman, and D. S. Luciano, Human physiology : the mechanisms of body function, 8th ed. Boston: McGraw-Hill, 2001.

[5]     A. Despopoulos and S. Silbernagl, Color atlas of physiology, 6th ed. Stuttgart ; New York: Thieme, 2009.

[6]     D. L. Longo and T. R. Harrison, Harrison's principles of internal medicine, 18th ed. New York: McGraw-Hill, 2012.

[7]     World Health Organization, "Cardiovascular diseases," in Fact sheet vol. 317, ed, 2012.

[8]     J. Mackay, G. A. Mensah, World Health Organization., and Centers for Disease Control and Prevention (U.S.), The atlas of heart disease and stroke. Geneva: World Health Organization, 2004.

[9]     M. G. Khan, Encyclopedia of heart diseases: Academic Press, 2005.

[10]   World Health Organization, "Global status report on noncommunicable diseases 2010," 2011.

[11]   A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, and C. S. Fox, "Heart Disease and Stroke Statistics—2013 Update. A Report From the American Heart Association," Circulation, vol. 127, pp. 143-152, 2013.

[12]   M. Nichols, N. Townsend, P. Scarborough, R. Luengo-Fernandez, J. Leal, A. Gray, and M. Rayner, "European cardiovascular disease statistics 2012," European Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis, p. P104, 2012.

[13]   Centers for Disease Control and Prevention (U.S.). (2010, 1st July 2013). National Hospital Discharge Survey. Available: http://www.cdc.gov/nchs/fastats/insurg.htm

[14]   World Health Organization, World health statistics 2012: World Health Organization, 2012.

[15]   P. Leeson, Cardiovascular imaging: OUP Oxford, 2011.

[16]   J. Bogaert, S. Dymarkowski, and A. M. Taylor, Clinical Cardiac MRI: Springer-Verlag Berlin Heidelberg, 2005.

[17]   R. Y. Kwong, Cardiovascular magnetic resonance imaging: Springer, 2006.

[18]   V. Dilsizian and G. M. Pohost, Cardiac CT, PET and MR: Wiley-Blackwell, 2011.

[19]   P. Suetens, Fundamentals of medical imaging, 2nd ed.: Cambridge University Press, 2009.

[20]   S. G. Myerson, J. Francis, and S. Neubauer, Cardiovascular magnetic resonance: Oxford University Press, 2010.

[21]   E. Nicol, J. Stirrup, A. D. Kelion, and S. P. Padley, Cardiovascular computed tomography: OUP Oxford, 2011.

[22]   J. L. Zamorano, The ESC textbook of cardiovascular imaging: Springer, 2010.

[23]   E.-S. H. Ibrahim, "Imaging sequences in cardiovascular magnetic resonance: current role, evolving applications, and technical challenges," The International Journal of Cardiovascular Imaging, vol. 28, pp. 2027-2047, 2012.

[24]   T. Karamitsos and S. Neubauer, "Cardiovascular magnetic resonance imaging," Medicine, vol. 38, pp. 384-389, 2010.

[25]   D. J. Pennell, "Cardiovascular magnetic resonance," Circulation, vol. 121, pp. 692-705, 2010.

[26]   F. Grothues, G. C. Smith, J. C. Moon, N. G. Bellenger, P. Collins, H. U. Klein, and D. J. Pennell, "Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy," The American journal of cardiology, vol. 90, pp. 29-34, 2002.

[27]   C. A. Miller, K. Pearce, P. Jordan, R. Argyle, D. Clark, M. Stout, S. G. Ray, and M. Schmitt, "Comparison of real-time three-dimensional echocardiography with cardiovascular magnetic resonance for left ventricular volumetric assessment in unselected patients," European Heart Journal–Cardiovascular Imaging, vol. 13, pp. 187-195, 2012.

[28]   A. F. Frangi, W. J. Niessen, and M. A. Viergever, "Three-dimensional modeling for functional analysis of cardiac images, a review," Medical Imaging, IEEE Transactions on, vol. 20, pp. 2-5, 2001.

[29]   C. Petitjean and J. N. Dacher, "A review of segmentation methods in short axis cardiac MR images," Medical image analysis, vol. 15, pp. 169-184, 2011.

[30]   R. O. Bonow, T. G. Ganiats, C. T. Beam, K. Blake, D. E. Casey, S. J. Goodlin, K. L. Grady, R. F. Hundley, M. Jessup, and T. E. Lynn, "ACCF/AHA/AMA-PCPI 2011 Performance Measures for Adults With Heart FailureA Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association–Physician Consortium for Performance Improvement," Journal of the American College of Cardiology, vol. 59, pp. 1812-1832, 2012.

[31]   W. G. Hundley, D. A. Bluemke, J. P. Finn, S. D. Flamm, M. A. Fogel, M. G. Friedrich, V. B. Ho, M. Jerosch-Herold, C. M. Kramer, and W. J. Manning, "ACCF/ACR/AHA/NASCI/SCMR 2010 Expert Consensus Document on Cardiovascular Magnetic Resonance A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents," Circulation, vol. 121, p. 2462, 2010.

[32]   P. Pibarot, É. Larose, and J. Dumesnil, "Imaging of Valvular Heart Disease," Canadian Journal of Cardiology, 2013.

[33]   S. Yamada, H. Ishii, H. Takahashi, T. Aoyama, Y. Morita, H. Kasuga, K. Kimura, Y. Ito, R. Takahashi, and T. Toriyama, "Prognostic value of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all-cause mortality in end-stage renal disease patients," Clinical Journal of the American Society of Nephrology, vol. 5, pp. 1793-1798, 2010.

[34]   J. K. Ghali, Y. Liao, B. Simmons, A. Castaner, G. Cao, and R. S. Cooper, "The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease," Annals of internal medicine, vol. 117, pp. 831-836, 1992.

[35]   J. Anderson, A. N. Weaver, B. D. Horne, H. U. Jones, G. K. Jelaco, J. A. Cha, H. E. Busto, J. Hall, K. Walker, and D. D. Blatter, "Normal cardiac magnetic resonance measurements and interobserver discrepancies in volumes and mass using the papillary muscle inclusion method," The Open General and Internal Medicine Journal, vol. 1, pp. 6-12, 2007.

[36]   C. A. Miller, P. Jordan, A. Borg, R. Argyle, D. Clark, K. Pearce, and M. Schmitt, "Quantification of left ventricular indices from SSFP cine imaging: Impact of real-world variability in analysis methodology and utility of geometric modeling," Journal of Magnetic Resonance Imaging, 2012.

[37]   G. L. Hautvast, C. J. Salton, M. L. Chuang, M. Breeuwer, C. J. O'Donnell, and W. J. Manning, "Accurate computer‐aided quantification of left ventricular parameters: Experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study," Magnetic Resonance in Medicine, vol. 67, pp. 1478-1486, 2012.

[38]   L. Cordero-Grande, G. Vegas-Sánchez-Ferrero, P. Casaseca-de-la-Higuera, J. Alberto San-Román-Calvar, A. Revilla-Orodea, M. Martín-Fernández, and C. Alberola-López, "Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model," Medical image analysis, vol. 15, pp. 283-301, 2011.

[39]   A. M. Sigmund, A. Usman, M. Wasielewski, A. R. Akhavan, S. Giri, M. A. Stratton, J. Collins, and J. Carr, "Semi-automatic inline calculation of left ventricular function using cardiac MRI (CMR)," Journal of Cardiovascular Magnetic Resonance, vol. 15, p. P80, 2013.

[40]   M. Wasielewski, A. A. Usman, P. J. Weale, and J. Carr, "Manual verses automatic inline ventricular function assessment using MRI," Journal of Cardiovascular Magnetic Resonance, vol. 13, p. P354, 2011.

[41]   A. Eslami, A. Karamalis, A. Katouzian, and N. Navab, "Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI," Medical image analysis, 2012.

[42]   I. Ben Ayed, H.-m. Chen, K. Punithakumar, I. Ross, and S. Li, "Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure," Medical image analysis, vol. 16, pp. 87-100, 2012.

[43]   H. Hu, H. Liu, Z. Gao, and L. Huang, "Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming," Magnetic resonance imaging, 2012.

[44]   H. Liu, H. Hu, X. Xu, and E. Song, "Automatic Left Ventricle Segmentation in Cardiac MRI Using Topological Stable-State Thresholding and Region Restricted Dynamic Programming," Academic Radiology, 2012.

[45]   C. Constantinides, E. Roullot, M. Lefort, and F. Frouin, "Fully automated segmentation of the left ventricle applied to cine MR images: Description and results on a database of 45 Subjects," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 3207-3210.

[46]   J. Ulén, P. Strandmark, and F. Kahl, "An Efficient Optimization Framework for Multi-Region Segmentation based on Lagrangian Duality," 2012.

[47]   D. Barbosa, T. Dietenbeck, J. Schaerer, J. D'hooge, D. Friboulet, and O. Bernard, "B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation," Image Processing, IEEE Transactions on, vol. 21, pp. 241-251, 2012.

[48]   V. A. Hegde, J. R. Mikolich, M. Doyle, V. K. Rathi, J. A. Yamrozik, R. B. Williams, and R. Biederman, "Cardiac magnetic resonance imaging in today's economic climate; a cost effectiveness analysis," Journal of Cardiovascular Magnetic Resonance, vol. 13, p. M12, 2011.

[49]   D. J. Pennell, U. P. Sechtem, C. B. Higgins, W. J. Manning, G. M. Pohost, F. E. Rademakers, A. C. van Rossum, L. J. Shaw, and E. K. Yucel, "Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report," European heart journal, vol. 25, pp. 1940-1965, 2004.

[50]   K. Alfakih, S. Plein, H. Thiele, T. Jones, J. P. Ridgway, and M. U. Sivananthan, "Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences," Journal of Magnetic Resonance Imaging, vol. 17, pp. 323-329, 2003.

[51]   S. Clay, K. Alfakih, A. Radjenovic, T. Jones, and J. P. Ridgway, "Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation," Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 19, pp. 41-45, 2006.

[52]   A. Maceira, S. Prasad, M. Khan, and D. Pennell, "Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance," Journal of Cardiovascular Magnetic Resonance, vol. 8, pp. 417-426, 2006.

[53]   J. C. Moon, C. H. Lorenz, J. M. Francis, G. C. Smith, and D. J. Pennell, "Breath-hold FLASH and FISP Cardiovascular MR Imaging: Left Ventricular Volume Differences and Reproducibility1," Radiology, vol. 223, pp. 789-797, 2002.

[54]   L. Sugeng, V. Mor-Avi, L. Weinert, J. Niel, C. Ebner, R. Steringer-Mascherbauer, F. Schmidt, C. Galuschky, G. Schummers, and R. M. Lang, "Quantitative Assessment of Left Ventricular Size and Function Side-by-Side Comparison of Real-Time Three-Dimensional Echocardiography and Computed Tomography With Magnetic Resonance Reference," Circulation, vol. 114, pp. 654-661, 2006.

[55]   J. Gutteling, L. Theunissen, and P. Wijn, "Comparison of Cardiac MR and 3D Echocardiography Left Ventricular Analysis," in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, 2009, pp. 50-52.

[56]   A. Bailly, J. Lipiecki, P. Chabrot, A. Alfidja, J. Garcier, S. Ughetto, J. Ponsonnaille, and L. Boyer, "Assessment of left ventricular volumes and function by cine-MR imaging depending on the investigator’s experience," Surgical and radiologic anatomy, vol. 31, pp. 113-120, 2009.

[57]   S. E. Luijnenburg, D. Robbers-Visser, A. Moelker, H. W. Vliegen, B. J. Mulder, and W. A. Helbing, "Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging," The International Journal of Cardiovascular Imaging, vol. 26, pp. 57-64, 2010.

[58]   P. Berkovic, M. Hemmink, P. M. Parizel, C. J. Vrints, and B. P. Paelinck, "MR image analysis: Longitudinal cardiac motion influences left ventricular measurements," European journal of radiology, vol. 73, pp. 260-265, 2010.

[59]   T. Papavassiliu, H. P. Kühl, M. Schröder, T. Süselbeck, O. Bondarenko, C. K. Böhm, A. Beek, M. M. Hofman, and A. C. van Rossum, "Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging1," Radiology, vol. 236, pp. 57-64, 2005.

[60]   M. C. Hogan, S. E. Petersen, L. E. Hudsmith, J. M. Francis, S. Neubauer, and M. D. Robson, "Effects of steady state free precession parameters on cardiac mass, function, and volumes," The International Journal of Cardiovascular Imaging, vol. 23, pp. 583-589, 2007.

[61]   M. L. Chuang, P. Gona, G. L. Hautvast, C. J. Salton, S. J. Blease, S. B. Yeon, M. Breeuwer, C. J. O'Donnell, and W. J. Manning, "Impact of left ventricular trabeculations and papillary muscles on measures of cavity volume and ejection fraction," Journal of Cardiovascular Magnetic Resonance, vol. 13, p. P36, 2011.

[62]   M. Lynch, O. Ghita, and P. F. Whelan, "Segmentation of the left ventricle of the heart in 3-D+ t MRI data using an optimized nonrigid temporal model," Medical Imaging, IEEE Transactions on, vol. 27, pp. 195-203, 2008.

[63]   T. Chen, J. Babb, P. Kellman, L. Axel, and D. Kim, "Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI," Medical Imaging, IEEE Transactions on, vol. 27, pp. 1084-1094, 2008.

[64]   I. Ben Ayed, S. Li, and I. Ross, "Embedding overlap priors in variational left ventricle tracking," Medical Imaging, IEEE Transactions on, vol. 28, pp. 1902-1913, 2009.

[65]   A. Goshtasby and D. A. Turner, "Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers," Medical Imaging, IEEE Transactions on, vol. 14, pp. 56-64, 1995.

[66]   S. Huang, J. Liu, L. C. Lee, S. K. Venkatesh, L. L. San Teo, C. Au, and W. L. Nowinski, "An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine mr images," Journal of Digital Imaging, vol. 24, pp. 598-608, 2011.

[67]   Y. Lu, P. Radau, K. Connelly, A. Dick, and G. A. Wright, "Segmentation of left ventricle in cardiac cine MRI: An automatic image-driven method," in Functional Imaging and Modeling of the Heart, ed: Springer, 2009, pp. 339-347.

[68]   R. Van der Geest, E. Jansen, V. Buller, and J. Reiber, "Automated detection of left ventricular epi-and endocardial contours in short-axis MR images," in Computers in Cardiology 1994, 1994, pp. 33-36.

[69]   D. T. Gering, "Automatic segmentation of cardiac MRI," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, ed: Springer, 2003, pp. 524-532.

[70]   A. Pednekar, U. Kurkure, R. Muthupillai, S. Flamm, and I. A. Kakadiaris, "Automated left ventricular segmentation in cardiac MRI," Biomedical Engineering, IEEE Transactions on, vol. 53, pp. 1425-1428, 2006.

[71]   X. Wang, Q. Hu, and P. A. Heng, "Left ventricle segmentation with mixture of Gaussian active contours," in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, 2012, pp. 230-233.

[72]   C. A. Cocosco, W. J. Niessen, T. Netsch, E. j. Vonken, G. Lund, A. Stork, and M. A. Viergever, "Automatic image-driven segmentation of the ventricles in cardiac cine MRI," Journal of Magnetic Resonance Imaging, vol. 28, pp. 366-374, 2008.

[73]   M. Lynch, O. Ghita, and P. F. Whelan, "Automatic segmentation of the left ventricle cavity and myocardium in MRI data," Computers in Biology and Medicine, vol. 36, pp. 389-407, 2006.

[74]   N. Paragios and R. Deriche, "Geodesic active regions and level set methods for supervised texture segmentation," International journal of computer vision, vol. 46, pp. 223-247, 2002.

[75]   C. Li, X. Jia, and Y. Sun, "Improved semi-automated segmentation of cardiac CT and MR images," in Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, 2009, pp. 25-28.

[76]   C. Pluempitiwiriyawej, J. M. Moura, Y.-J. L. Wu, and C. Ho, "STACS: New active contour scheme for cardiac MR image segmentation," Medical Imaging, IEEE Transactions on, vol. 24, pp. 593-603, 2005.

[77]   J. Woo, P. J. Slomka, C.-C. Jay Kuo, and B.-W. Hong, "Multiphase Segmentation using an Implicit Dual Shape Prior: Application to Detection of Left Ventricle in Cardiac MRI," Computer vision and image understanding, 2013.

[78]   C. Constantinides, Y. Chenoune, N. Kachenoura, E. Roullot, E. Mousseaux, A. Herment, and F. Frouin, "Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models," The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge, 2009.

[79]   R. El Berbari, I. Bloch, A. Redheuil, E. Angelini, E. Mousseaux, F. Frouin, and A. Herment, "An automated myocardial segmentation in cardiac MRI," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 4508-4511.

[80]   G. Hautvast, S. Lobregt, M. Breeuwer, and F. Gerritsen, "Automatic contour propagation in cine cardiac magnetic resonance images," Medical Imaging, IEEE Transactions on, vol. 25, pp. 1472-1482, 2006.

[81]   X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan, "Estimation of 3-D left ventricular deformation from medical images using biomechanical models," Medical Imaging, IEEE Transactions on, vol. 21, pp. 786-800, 2002.

[82]   Q. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. Magnin, "A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI," in Image and Signal Processing and Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium on, 2001, pp. 250-254.

[83]   M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache, "Deformable biomechanical models: Application to 4D cardiac image analysis," Medical image analysis, vol. 7, pp. 475-488, 2003.

[84]   N. Paragios, M. Rousson, and V. Ramesh, "Knowledge-based registration & segmentation of the left ventricle: A level set approach," in Applications of Computer Vision, 2002.(WACV 2002). Proceedings. Sixth IEEE Workshop on, 2002, pp. 37-42.

[85]   S. C. Mitchell, J. G. Bosch, B. P. F. Lelieveldt, R. J. van der Geest, J. H. C. Reiber, and M. Sonka, "3-D active appearance models: segmentation of cardiac MR and ultrasound images," Medical Imaging, IEEE Transactions on, vol. 21, pp. 1167-1178, 2002.

[86]   H. C. Van Assen, M. G. Danilouchkine, A. F. Frangi, S. n. Ord s, J. J. Westenberg, J. H. Reiber, and B. P. Lelieveldt, "SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data," Medical image analysis, vol. 10, pp. 286-303, 2006.

[87]   S. C. Mitchell, B. P. F. Lelieveldt, R. J. van der Geest, H. G. Bosch, J. Reiver, and M. Sonka, "Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images," Medical Imaging, IEEE Transactions on, vol. 20, pp. 415-423, 2001.

[88]   H. Zhang, A. Wahle, R. K. Johnson, T. D. Scholz, and M. Sonka, "4-D cardiac MR image analysis: left and right ventricular morphology and function," Medical Imaging, IEEE Transactions on, vol. 29, pp. 350-364, 2010.

[89]   B. P. Lelieveldt, R. J. van der Geest, J. H. Reiber, J. G. Bosch, S. C. Mitchell, and M. Sonka, "Time-continuous segmentation of cardiac image sequences using active appearance motion models," in Information Processing in Medical Imaging, 2001, pp. 446-452.

[90]   M. Lorenzo-Valdés, G. I. Sanchez-Ortiz, R. Mohiaddin, and D. Rueckert, "Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration," in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002, ed: Springer, 2002, pp. 642-650.

[91]   X. Zhuang, K. Rhode, S. Arridge, R. Razavi, D. Hill, D. Hawkes, and S. Ourselin, "An atlas-based segmentation propagation framework using locally affine registration–application to automatic whole heart segmentation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, ed: Springer, 2008, pp. 425-433.

[92]   X. Zhuang, K. S. Rhode, R. S. Razavi, D. J. Hawkes, and S. Ourselin, "A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI," Medical Imaging, IEEE Transactions on, vol. 29, pp. 1612-1625, 2010.

[93]   J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, and J. Garot, "Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts," Image and Vision Computing, vol. 28, pp. 1229-1243, 2010.

[94]   A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Journal of the Royal Statistical Society. Series B (Methodological), pp. 1-38, 1977.

[95]   M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International journal of computer vision, vol. 1, pp. 321-331, 1988.

[96]   S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," Journal of computational physics, vol. 79, pp. 12-49, 1988.

[97]   V. Caselles, F. Catté, T. Coll, and F. Dibos, "A geometric model for active contours in image processing," Numerische mathematik, vol. 66, pp. 1-31, 1993.

[98]   S. Lankton and A. Tannenbaum, "Localizing region-based active contours," Image Processing, IEEE Transactions on, vol. 17, pp. 2029-2039, 2008.

[99]   C. Xu and J. L. Prince, "Snakes, shapes, and gradient vector flow," Image Processing, IEEE Transactions on, vol. 7, pp. 359-369, 1998.

[100] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active shape models-their training and application," Computer vision and image understanding, vol. 61, pp. 38-59, 1995.

[101] T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," in Computer Vision—ECCV’98, ed: Springer, 1998, pp. 484-498.

[102] M. M. Hadhoud, M. I. Eladawy, and A. Farag, "Region of Interest Localization of Cardiac Structure from Cine MRI Images," in Information Technology: New Generations (ITNG), 2012 Ninth International Conference on, 2012, pp. 14-17.

[103] J. Huang, X. Huang, D. Metaxas, and L. Axel, "Dynamic texture based heart localization and segmentation in 4-d cardiac images," in Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, 2007, pp. 852-855.

[104] J. Ringenberg, M. Deo, V. Devabhaktuni, D. Filgueiras-Rama, G. Pizarro, B. Ibañez, O. Berenfeld, P. Boyers, and J. Gold, "Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI," Measurement Science and Technology, vol. 23, p. 125405, 2012.

[105] C. A. Cocosco, T. Netsch, J. Sénégas, D. Bystrov, W. J. Niessen, and M. A. Viergever, "Automatic cardiac region-of-interest computation in cine 3D structural MRI," in International Congress Series, 2004, pp. 1126-1131.

[106] C. Constantinides, Y. Chenoune, E. Mousseaux, E. Roullot, and F. Frouin, "Automated heart localization for the segmentation of the ventricular cavities on cine magnetic resonance images," in Computing in Cardiology, 2010, 2010, pp. 911-914.

[107] X. Lin, B. R. Cowan, and A. A. Young, "Automated detection of left ventricle in 4D MR images: experience from a large study," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, ed: Springer, 2006, pp. 728-735.

[108] L. Tautz, O. Friman, A. Hennemuth, A. Seeger, and H.-O. Peitgen, "Automatic Detection of a Heart ROI in Perfusion MRI Images," in Bildverarbeitung für die Medizin 2011, ed: Springer, 2011, pp. 259-263.

[109] R. J. Van der Geest, V. G. Buller, E. Jansen, H. J. Lamb, L. H. Baur, E. E. van der Wall, A. de Roos, and J. H. Reiber, "Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images," Journal of computer assisted tomography, vol. 21, pp. 756-765, 1997.

[110] C. Ciofolo, M. Fradkin, B. Mory, G. Hautvast, and M. Breeuwer, "Automatic myocardium segmentation in late-enhancement MRI," in Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, 2008, pp. 225-228.

[111] J. E. McManigle, R. V. Stebbing, and J. A. Noble, "Modified Hough transform for left ventricle myocardium segmentation in 3-D echocardiogram images," in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, 2012, pp. 290-293.

[112] O. Bernard, D. Friboulet, P. Thévenaz, and M. Unser, "Variational B-spline level-set: a linear filtering approach for fast deformable model evolution," Image Processing, IEEE Transactions on, vol. 18, pp. 1179-1191, 2009.

[113] Q. Duan, E. D. Angelini, and A. F. Laine, "Real-time segmentation by active geometric functions," Computer methods and programs in biomedicine, vol. 98, pp. 223-230, 2010.

[114] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces vol. 153: Springer, 2003.

[115] S. Osher and N. Paragios, Geometric level set methods in imaging, vision, and graphics: Springer, 2003.

[116] T. F. Chan and L. A. Vese, "Active contours without edges," Image Processing, IEEE Transactions on, vol. 10, pp. 266-277, 2001.

[117] N. Otsu, "A threshold selection method from gray-level histograms," Automatica, vol. 11, pp. 23-27, 1975.

[118] D. Barbosa, O. Bernard, O. Savu, T. Dietenbeck, B. Heyde, P. Claus, D. Friboulet, and J. D'hooge, "Coupled B-spline active geometric functions for myocardial segmentation: A localized region-based approach," in Ultrasonics Symposium (IUS), 2010 IEEE, 2010, pp. 1648-1651.

[119] Y. Shi and W. C. Karl, "A real-time algorithm for the approximation of level-set-based curve evolution," Image Processing, IEEE Transactions on, vol. 17, pp. 645-656, 2008.

[120] H.-Y. Lee, N. C. Codella, M. D. Cham, J. W. Weinsaft, and Y. Wang, "Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI," Biomedical Engineering, IEEE Transactions on, vol. 57, pp. 905-913, 2010.

[121] J. Canny, "A computational approach to edge detection," Pattern Analysis and Machine Intelligence, IEEE Transactions on, pp. 679-698, 1986.

[122] L. D. Cohen and I. Cohen, "Finite-element methods for active contour models and balloons for 2-D and 3-D images," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, pp. 1131-1147, 1993.

[123] D. Barbosa, B. Heyde, T. Dietenbeck, D. Friboulet, J. D'hooge, and O. Bernard, "Fast left ventricle tracking in 3D echocardiographic data using anatomical affine optical flow," in Functional Imaging and Modeling of the Heart (FIMH2013), 2013, pp. 191-199.

[124] L. Spreeuwers and M. Breeuwer, "Detection of left ventricular epi-and endocardial borders using coupled active contours," in International Congress Series, 2003, pp. 1147-1152.

[125] A. Elen, J. Hermans, H. Hermans, F. Maes, and P. Suetens, "A 3d+ time spatio-temporal model for joint segmentation and registration of sparse cardiac cine MR image stacks," in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, ed: Springer, 2012, pp. 198-206.

[126] J.-Y. Bouguet, "Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm," Intel Corporation, 2001.

[127] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proceedings of the 7th international joint conference on Artificial intelligence, 1981.

[128] P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick, and G. Wright, "Evaluation framework for algorithms segmenting short axis cardiac MRI," MIDAS J.—Cardiac MR Left Ventricle Segmentation Challenge, 2009.

[129] D. G. Altman and J. M. Bland, "Measurement in medicine: the analysis of method comparison studies," The statistician, pp. 307-317, 1983.

[130] M. Jolly, "Fully automatic left ventricle segmentation in cardiac cine mr images using registration and minimum surfaces," in MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge. MIDAS Journal, 2009.

[131] J. Schaerer, C. Casta, J. Pousin, and P. Clarysse, "A dynamic elastic model for segmentation and tracking of the heart in MR image sequences," Medical image analysis, vol. 14, pp. 738-749, 2010.

[132] M. G. Uzunbas, S. Zhang, K. M. Pohl, D. Metaxas, and L. Axel, "Segmentation of myocardium using deformable regions and graph cuts," in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, 2012, pp. 254-257.

[133] J. Wijnhout, D. Hendriksen, H. Assen, and R. der Geest, "LV challenge LKEB contribution: Fully automated myocardial contour detection," The MIDAS Journal, vol. 43, 2009.

[134] M. Hüllebrand, A. Hennemuth, D. Messroghli, T. Kühne, and O. Friman, "Semi-Automatic 4D Fuzzy Connectedness Segmentation of Heart Ventricles in Cine MRI," in Bildverarbeitung für die Medizin 2011, ed: Springer, 2011, pp. 3-7.

[135] L. Marak, J. Cousty, L. Najman, and H. Talbot, "4D Morphological segmentation and the MICCAI LV-segmentation grand challenge," in MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, 2009, pp. 1-8.

[136] S. O’Brien, O. Ghita, and P. Whelan, "Segmenting the left ventricle in 3D using a coupled ASM and a learned non-rigid spatial model," The MIDAS Journal, vol. 49, 2009.

[137] K. Tsuiki and E. L. Ritman, "Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole," The Tohoku journal of experimental medicine, vol. 132, p. 119, 1980.

Universiteit of Hogeschool
Andere
Thesis jaar
2013