Ashkenazy, H., O. Penn, A. Doron-Faigenboim, O. Cohen, G. Cannarozzi, O. Zomer, and T. Pupko (2012), “FastML: A web server for probabilistic reconstruction of ancestral sequences.” Nucleic Acids Research, 40, 580–584.
Atici, Ö . and B. Nalbantoglu (2003), “Antifreeze proteins in higher plants.” Phytochemistry, 64, 1187–1196.
Baker, D. (2010), “An exciting but challenging road ahead for computational enzyme design.” Protein Science, 19, 1817–1819.
Bradford, M. M. (1976), “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.” Analytical Biochemistry, 72, 248–254.
Buckley, H. E. (1952), Crystal growth. Wiley, New York. Chao, H., P. L. Davies, and J. F. Carpenter (1996), “Effects of antifreeze proteins on red blood cell survival during cryopreservation.” The Journal of Experimental Biology, 199, 2071–2076.
Chao, H., M. E. Housten, R. S. Hodges, C. M. Kay, B. D. Sykes, M. C. Loewen, P. L. Davies, and F. D. Sönnichsen (1997), “A diminished role for hydrogen bonds in antifreeze protein binding to ice.” Biochemistry, 36, 14652–14660.
Chen, L., A. L. DeVries, and C.-H. C. Cheng (1997a), “Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.” Proceedings of the National Academy of Sciences of the United States of America, 94, 3817–3822.
Chen, L., A. L. DeVries, and C.-H. C. Cheng (1997b), “Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish.” Proceedings of the National Academy of Sciences of the United Stated of America, 94, 3811–3816.
Cheng, C.-H. C. (1998), “Evolution of the diverse antifreeze proteins.” Current Opinion in Genetics and Development, 8, 715–720.
Constans, A. (2005), “Pioneering ionization technique paved the way for proteomics.” The Scientist, 19, 37–41.
Davies, P. L. (2014), “Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth.” Trends in Biochemical Sciences, 39, 548–555.
Davies, P. L., J. Baardsnes, M. J. Kuiper, and V. K.Walker (2002), “Structure and function of antifreeze proteins.” Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 927–935.
Davies, P. L. and C. L. Hew (1990), “Biochemistry of fish antifreeze proteins.” The FASEB Journal, 4, 2460–2468.
Davies, P. L., C. L. Hew, and F. L. Fletcher (1988), “Fish antifreeze proteins: Physiology and evolutionary biology.” Canadian Journal of Zoology, 66, 2611–2617.
Delhaise, P., M. Bardiaux, M. De Maeyer, M. Prevost, D. Vanbelle, J. Donneux, I. Lasters, E. Vancustem, P. Alard, and S.Wodak (1988), “The brugel package - toward computeraided-design of macromolecules.” Journal of molecular graphics, 6, 219.
Deng, G., D.W. Andrews, and R. A. Laursen (1997), “Amino acid sequence of a new type of antifreeze protein , from the longhorn sculpin Myoxocephalus octodecimspinosis.” Federation of European Biochemical Societies Letters, 402, 17–20.
Deng, G. and R. A.” Laursen (1998), “Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis.” Biochimica et Biophysica Acta, 1388, 305–314.
DeVries, A. L. (1984), “Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes.” Philosophical Transactions of the Royal Society of London, 304, 575–588.
DeVries, A. L., S. K. Komatsu, and R. E. Feeney (1970), “Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes.” Journal of Biological Chemistry, 245, 2901–2908.
DeVries, A. L. and Y. Lin (1977), “Structure of a peptide antifreeze and mechanism of adsorption to ice.” Biochimica et Biophysica Acta, 495, 388–392.
DeVries, A. L. and D.Wohlschlag (1969), “Freezing resistance in some Antarctic fishes.” Science, 163, 1073–1075.
Doucet, D., M. G. Tyshenko, M. J. Kuiper, S. P. Graether, B. D. Sykes, A. J. Daugulis, P. L. Davies, and V. K. Walker (2000), “Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity.” European Journal of Biochemistry, 267, 6082–6088.
Drevin, I. and B.-L. Johansson (1991), “Stability of Superdex 75 prep grade and Superdex200 prep grade under different chromatographic conditions.” Journal of Chromatography, 547, 21–30.
Drori, R., Y. Celik, P. L. Davies, and I. Braslavsky (2014), “Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.” Journal of The Royal Society Interface, 11, 10.
Duman, J. and K. Horwath (1983), “The role of hemolymph proteins in the cold tolerance of insects.” Annual review of physiology, 45, 261–270.
Duman, J. G. (1979), “Subzero temperature tolerance in spiders: The role of thermal hysteresis factors.” Journal of Comparative Physiology, 131, 347–352.
Duman, J. G. (2001), “Antifreeze and ice nucleator proteins in terrestrial arthropods.” Annual Review of Physiology, 63, 327–357.
Duman, J. G. and A. L. DeVries (1976), “Isolation, characterization and physical properties of protien antifreezes from the winter flounder, Pseudopleuronectes americanus.” Comparative Biochemistry and Physiology, 533, 375–380.
Duman, J. G. and T. M. Olsen (1993), “Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants.” Cryobiology, 30, 322–328.
Duman, J. H., J. L. Patterson, J. J. Kozak, and A. L. DeVries (1980), “Isopiestic determination of water binding by fish antifreeze glycoproteins.” Biochimica et Biophysica Acta, 626, 332–336.
Emmert-Streib, F. (2012), “Limitation of gene duplication models: Evolution of modules in protein interaction networks.” Public Library of Science One, 7, 1–13.
Farewell, A., K. Kvint, and T. Nyström (1998), “uspB, a new _S-regulated gene in Escherichia coli which is required for stationary-phase resistance to ethanol.” Journal of Bacteriology, 180, 6140–6147.
Fleishman, S. J., J. E. Corn, E.-M. Strauch, T. A. Whitehead, J. Karanicolas, and D. Baker (2011), “Hotspot-centric De Novo design of protein binders.” Journal of Molecular Biology, 413, 1047–1062.
Franks, F. (1982), The properties of aqueous solutions at subzero temperatures. Plenum Press, New York. In Water, volume 7: Water and Aqueous Solutions at Subzero Temperatures.
Gagne, M., L. Spyracopoulos, S. P. Graether, Z. Jia, P. L. Davies, and B. D. Sykes (2003), “Spruce budworm antifreeze protein: Changes in structure and dynamics at low temperature.” Journal of Molecular Biology, 327, 1155–1168.
Garnham, C. P., R. L. Campbell, and P. L. Davies (2011), “Anchored clathrate waters bind antifreeze proteins to ice.” Proceedings of the National Academy of Sciences, 108, 7363–7367.
Gauthier, S. Y., A. J. Scotter, F.-H. Lin, J. Baardsnes, G. L. Fletcher, and P. L. Davies (2008), “A re-evaluation of the role of type IV antifreeze protein.” Cryobiology, 57, 292–296.
Gilbert, J. A., P. L. Davies, and J. Laybourn-parry (2005), “A hyperactive , Ca2+-dependent antifreeze protein in an Antarctic bacterium.” FEMS Microbiology Letters, 245, 67–72.
Gille, C. and C. Frömmel (2001), “STRAP: editor for STRuctural Alignments of Proteins.” Bioinformatics, 17, 377–378.
Graham, L. A., Y-C. Liou, V. K.Walker, and P. L. Davies (1997), “Hyperactive antifreeze protein from beetles.” Nature, 388, 727–728.
Griffith, M. and K. V. Ewart (1995), “Antifreeze proteins and their potential use in frozen foods.” Biotechnology advances, 13, 375–402.
Guilhaus, M. (1995), “Principles and instrumentation in time-of-flight mass spectrometry.” Journal of Mass Spectrometry, 30, 1519–1532.
Hakim, A., J. B. Nguyen, K. Basu, D. F. Zhu, D. Thakral, P. L. Davies, F. J. Isaacs, Y. Modis, and W. Meng (2013), “Crystal structure of an insect antifreeze protein and its implications for ice binding.” The Journal of Biological Chemistry, 288, 12295–12304.
Harding, M. M., P. I. Anderberg, and A. D. J. Haymet (2003), “Antifreeze glycoproteins from polar fish.” European Journal of Biochemistry, 270, 1381–1392.
Haschemeyer, A. E. V., W. Guschlbaur, and A. L. DeVries (1977), “Water binding by antifreeze glycoproteins from Antarctic fish.” Nature, 269, 87–88.
Haymet, A. D. J., L. G. Ward, and M. M. Harding (1999), “Winter flounder “antifreeze” proteins: Synthesis and ice grotwh inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions.” Journal of the American Chemical Society, 121, 941–948.
Haymet, A. D. J., L. G.Ward, and M. M. Harding (2001), “Hydrophobic analogues of the winter flounder antifreeze protein.” Federation of European Biochemical Societies letters, 491, 285–288.
Haymet, A. D. J., L. G. Ward, M. M. Harding, and C. A. Knight (1998), “Valine substituted winter flounder antifreeze: Preservation of ice growth hysteresis.” Federation of European Biochemical Societies letters, 430, 301–306.
Hobbs, R. S., M. A. Shears, L. A. Graham, P. L. Davies, and G. L. Fletcher (2011), “Isolation and characterization of type I antifreeze proteins from cunner, Tautogolabrus adspersus, order Perciformes.” Federation of European Biochemical Societies, 278, 3699–3710.
Hyzak, L., R. Moos, F. von Rath, V. Wulf, M. Wirtz, D. Melchior, H.-W. Kling, M. Köhler, S. Gäb, and O. J. Schmitz (2011), “Quantitative matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis of synthetic polymers and peptides.” Analytical Chemistry, 83, 9467–9471.
Isgro, T. A., M. Sotomayor, and E. Cruz-Chu (2014), Case study: Water and ice. University of Illinois.
Karim, O. A. and A. D. J. Haymet (1988), “The ice/water interface: A molecular dynamics simulation study.” The Journal of Chemical Physics, 89, 6889–6896.
Kaufmann, K. W., G. H. Lemmon, S. L. DeLuca, J. H. Sheehan, and J. Meiler (2010), “Practically useful: What the Rosetta Protein Modelling Suite can do for you.” Biochemistry, 49, 2987–2998.
Knight, C. A. (1967), The freezing of supercooled liquids. D. Van Nostrand Company, Inc., New Jersey.
Knight, C. A., E. Driggers, and A. L. DeVries (1993), “Adsorption to ice of fish antifreeze glycopeptides 7 and 8.” Biophysical Journal, 64, 252–259.
Kondo, H., Y. Hanada, H. Sugimoto, T. Hoshino, C. P. Garnham, P. L. Davies, and S. Tsuda (2012), “Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.” Proceedings of the National Academy of Sciences, 109, 9360–9365.
Koushafar, H., L. Pham, C. Lee, and B. Rubinsky (1997), “Chemical adjuvant cryosurgery with antifreeze proteins.” Journal of Surgical Oncology, 66, 114–121.
Lauersen, K. J., A. Brown, A. Middleton, P. L. Davies, and V. K.Walker (2011), “Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne.” Crybiology, 62, 194–201.
Leinala, E. K., P. L. Davies, D. Doucet, M. G. Tyshenko, V. K.Walker, and Z. Jia (2002a), “A _-helical antifreeze protein isoform with increased activity.” The Journal of Biological Chemistry, 277, 33349–33352.
Leinala, E. K., P. L. Davies, and Z. Jia (2002b), “Crystal structure of _-helical antifreeze protein points to a general ice binding model.” Structure, 10, 619–627.
Li, C. and C. Jin (2004), “Letters to the Editor: 1H, 13C and 15N resonance assignments of the antifreeze protein cfAFP-501 from spruce budworm at different temperatures.” Journal of Biomolecular NMR, 30, 101–102.
Liou, Y.-C., A. Tocilj, P. L. Davies, and Z. Jia (2000), “Mimicry of ice structure by surface hydroxyls and water of a _-helix antifreeze protein.” Nature, 406, 322–324.
Liu, Y., Z. Li, Q. Lin, J. Kosinski, J. Seetharaman, J. M. Bujnicki, Sivaraman J., and C.-L. Hew (2007), “Structure and evolutionary origin of calcium dependent herring type II antifreeze protein.” Public Library of Science ONE, 2, 1–11.
Louis-Jeune, C., M. A. Andrade-Navarro, and C. Perez-Iratxeta (2011), “Prediction of protein secondary structure from circular dichroism using theoretically derived spectra.” Proteins: Structure, Function, and Bioinformatics, 80, 374–381.
Middleton, A. J., A. M. Brown, P. L. Davies, and V. K. Walker (2009), “Identification of the ice-binding face of a plant antifreeze protein.” Federation of European Biochemical Societies Letters, 583, 815–819.
Middleton, A. J., C. B. Marshall, F. Faucher, M. Bar-dolev, I. Braslavsky, R. L. Campbell, V. K. Walker, and P. L. Davies (2012), “Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.” Journal of Molecular Biology, 416, 713–724.
Mok, Y.-F., F.-H. Lin, L. A. Graham, Y. Celik, I. Braslavsky, and P. L. Davies (2010), “Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.” Biochemistry, 49, 2593–2603.
Muldrew, K., J. Rewcastle, B. J. Donnelly, J. C. Saliken, S. Liang, S. Goldie, M. Olson, R. Baissalov, and G. Sandison (2001), “Flounder antifreeze peptides increase the efficacy of cryosurgery.” Cryobiology, 42, 182–189.
Nishimiya, Y., H. Kondo, M. Takamichi, H. Sugimoto, M. Suzuki, A. Miura, and S. Tsuda (2008), “Crystal structure and mutational analysis of calcium-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus.” Journal of Molecular Biology, 382, 734–746.
Novagen (2003), pET system manual, 10 edition.
Novagen (n.d.), “Competent cells: What a difference a strain makes.” Merck KGaA, Darmstadt, Germany.
Ochlal, E.-L. (1991), “Biomineralization principle.” Principles and Applications in Bioinorganic Chemistry, 68, 627–630.
Perez-Iratxeta, C. and M. A. Andrade-Navarro (2008), “K2D2: Estimation of protein secondary structure from circular dichroism spectra.” BioMed Central Structural Biology, 8, 1–5.
Pupko, T., I. Pe’er, M. Hasegawa, D. Graur, and N. Friedman (2002), “A branch-andbound algorithm for the for the inference of ancestral amino-acids sequences when the replacement rate varies among sites: Application to the evolution of five gene families.” Bioinformatics, 18, 1116–1123.
Pupko, T., I. Pe’er, R. Shamir, and D. Graur (2000), “A fast algorithm for join reconstruction of ancestral amino acids sequences.” Molecular Biology and Evolution, 17, 890–896.
Rath, A., M. Glibowicka, V. G. Nadeau, G. Chen, and C. M. Deber (2009), “Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.” Proceedings of the Natoinal Academy of Sciences, 106, 1760–1765.
Raymond, J. A. (1976), Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Ph.D. thesis, University of California.
Raymond, J. A. (2000), “Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms.” Polar Biology, 23, 721–729.
Raymond, J. A. and A. L. DeVries (1977), “Adsorption inhibition as a mechanism of freezing resistance in polar fishes.” Proceedings of the National Academy of Sciences of the United States of America, 74, 2589–93.
Rosano, G. L. and E. A. Ceccarelli (2014), “Recombinant protein expression in Escherichia coli: Advances and challenges.” Frontiers in Microbiology, 5, 1–17.
Sanders, C. J. (1991), Biology of North American spruce budworms. Elsevlier, Amsterdam. In tortricid pests, Their biology, natural enemies and control, volume 7: Tortricids in forestry.
Scheraga, G. A., G. Nemethy, and I. Z. Steinberg (1962), “The contribution of hydrophobic bonds to the thermal stability of protein conformations.” Journal of Biological Chemistry, 237, 2506–2508.
Schrödinger, LLC (2015), “The PyMOL molecular graphics system, version 1.8.” KEY: PyMOL, ANNOTATION: PyMOL The PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC.
Scotter, A. J., C. B. Marshall, L. A. Graham, J. A. Gilbert, C. P. Garnham, and P. L. Davies (2006), “The basis for hyperactivity of antifreeze proteins.” Cryobiology, 53, 229–239.
Shier, W. T., Y. Lin, and A. L. DeVries (1972), “Structure and mode of action of glycoproteins from an Antarctic fish.” Biochimica et Biophysica Acta, 263, 406–413.
Sönnichsen, F., B. Sykes, H. Chao, and P. L. Davies (1993), “The nonhelical structure of antifreeze protein type III.” Science, 259, 1154–1157.
Sun, T., F.-H. Lin, R. L. Campbell, J. S. Allingham, and P. L. Davies (2014), “An antifreeze proteins folds with an interior network of more than 400 semi-clathrate waters.” Science, 343, 795–798.
Tablin, F., A. E. Oliver, N. J. Walker, L. M. Crowe, and J. H. Crowe (1996), “Membrane phase transition of intact human platelets: Correlation with cold-induced activation.” Journal of Cellular Physiology, 168, 305–313.
Taylor, R. G., D. C. Walker, and R. Mclnnes (1993), “E.coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing.” Nucleic Acids Research, 21, 1677–1678.
Teeter, M. M. (1984), “Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin.” Proceedings of the National Academy of Sciences, 81, 6014–6018.
Tursman, D., J. G. Duman, and C. A. Knight (1994), “Freeze tolerance adaptations in the centipede Lithobius forficatus.” Journal of Experimental Zoology, 268, 347–353.
Tyshenko, M. G., D. Doucet, P. L. Davies, and V. K. Walker (1997), “The antifreeze potential of the spruce budworm thermal hysteresis protein.” Nature Biotechnology, 15, 887–890.
Voet, A. R. D., H. Noguchi, C. Addy, D. Simoncini, D. Terada, S. Unzai, S.-Y. Park, K. Y. J. Zhang, and J. R. H. Tame (2014), “Computational design of a self-assembling symmetrical _-propeller protein.” Proceedings of the National Academy of Sciences, 111, 15102–15107.
Voet, A. R. D., H. Noguchi, C. Addy, K. Y. J. Zhang, and J. R. H. Tame (2015), “Biomineralization of a cadmium chloride nanocrystal by a designed symmetrical protein.” Angewandte Chemie International Edition, 54, 9857–9860.
Wang, T., Q. Zhu, X. Yang, J. R. Layne, and A. L. DeVries (1994), “Antifreeze glycoproteins from Antarctic Notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation.” Cryobiology, 31., 185–192.
Woody, R. W. (1995), “Circular dichroism.” Methods in Enzymology, 246, 34–71.
Wu, Y., J. Banoub, S. V. Goddard, M. H. Kao, and G. L. Fletcher (2001), “Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition.” Comparative Biochemistry and Physiology Part B, 128, 265–273.
Yeh, Y. and R. E. Feeney (1996), “Antifreeze proteins : Structures and mechanisms of function.” Chemical Reviews, 96.
Yu, S. O. W. (2010), Antifreeze proteins: Activity comparisons and de novo design of an ice-binding protein. Master’s thesis, Queen’s University, Kingstone, Canada.
Zhang, W. and R. A. Laursen (1998), “Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.” The Journal of Biological Chemistry, 273, 34806–34812.
Zhang, z., S. Schwartz, L. Wagner, and W. Miller (2000), “A greedy algorithm for aligning DNA sequences.” Journal of Computation Biology, 7, 203–214.